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Introduction

@ Basic assumption: One model with one set of parameters fits for
all observations.

@ However, subgroups might exist for which different sets of
parameters hold, e.g., the relationship between some response
and regressors might be different for younger and older individuals.

@ If breakpoint between “younger” and “older” were known, one can
directly compare parameter estimates for both groups.

@ If the breakpoint is unknown or there is a smooth transition
between “young” and “old”, the subgroups can be still be detected
in a data-driven way.

@ Mixture model with age as a concomitant variable.

@ Model-based recursive partitioning with splits in age.

@ Question here: How do those two approaches compare for
detecting parameter instability in a linear model?



Mixture Models

@ Assumption: Data stem from K subgroups with different regression
parameters ﬂ(k) and error variances U(zk) (k=1,...,K).

K
f(yis Xis 21y B1ys 01ys - -+ Bikys O(ky) = Zwk(z,-) (i X" By, Tt)):
k=1

@ The component weights may depend on additional covariates z;
through a concomitant variable model, typically a multinomial logit
model -
exp(z,- a(k))

e .

> g=10(Z (g))

@ For a given K, the EM algorithm is used for ML estimation.
Typically, the model is fitted for K = 1,2, ... and the best-fitting
model, and thus K, is selected via an information criterion, here
the BIC.

7Tk(Z,') =




Model-Based Recursive Partitioning

Algorithm:
@ Estimate the model parameters in the current subgroup.
© Test parameter stability along each partitioning variable z;.

© If any instability is found, split the sample along the variable zj,
with the highest instability. Choose the breakpoint with the highest
improvement in model fit.

© Repeat 2—4 on the resulting subsamples until no further instability
is found.



Unifying Framework

@ Since each split can be expressed through an indicator function
I(+) (for going left or right), each branch of the tree can be
represented as a product of such indicator functions.

@ Thus, model-based tree can also be written as a weighted sum
over component models, albeit with rather different weights:

Jk

m(2i) = [T sy - 20 > by)
j=1

where

Z(|k) denotes the j-th partitioning variable for terminal node k,
b(jjx) is the associated breakpoint,

S(jjk) € {—1, 1} the sign (signaling splitting to the left or right), and
Jk the number of splits leading up to node k.



Comparison

@ Selection of K: Based on information criterion for mixture model
and on significance tests for trees.

@ Covariates: Optional for mixtures which can thus also detect latent
classes but required for trees which can thus only detect manifest
classes.

@ Multinomial logit model for mixtures models a smooth transition
while the sample splits of trees model abrupt shifts. Multiple splits
can represent a non-monotonic transition. Variable selection is
included in trees but requires an additional step for mixture models.

@ Clustering: Trees yield a hard clustering, mixture models a
probabilistic clustering.



Simulation: Questions

Two basic questions:
@ Is any instability found at all?
@ If so, are the correct subgroups recovered?

Potentially influential factors:

@ How does the relationship between the response y and the
regressors x differ between the subgroups and how strongly does
it differ?

@ If there are any additional covariates z available, how and how
strongly are those covariates connected to the subgroups?



Expectations

@ Trees are able to detect smaller differences in 5k than mixtures,
given the covariates z are associated strongly enough with the
subgroups. In contrast, mixtures are more suitable to detect
subgroups if they are only loosely associated with the covariates z,
as long as the differences in x) are strong enough.

@ Mixtures are more suitable if the association between covariates
and subgroups is smooth and monotonic. Trees are more suitable
if the association is characterized by abrupt shifts and possibly
non-monotonic.

@ If several covariates determine the subgroups simultaneously,
mixtures are more suitable, whereas trees are more suitable if z
includes several noise variables unconnected to the subgroups.



Simulation Design: Coefficients Scenarios
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Coefficients Scenarios

Simulation Design
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Simulation Design: Coefficients Scenarios

both
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Simulation Design: Coefficients Scenarios

both
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Simulation Design: Coefficients Scenarios

both
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Link between Single Covariate and Clusters
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Link between Single Covariate and Clusters
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Simulation Design: Covariates Scenario
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Simulation Design: Covariates Scenario
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Simulation Design: Covariates Scenario
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Simulation Design: Covariates Scenario

double step
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Simulation Design

Relationship between response and regressor:
@ How: 3 coefficient scenarios intercept, slope,and both
@ How strong: difference intensity x € {0,0.05,...,1}.

Covariates connected to subgroups:
@ How: 2 logistic scenarios axis1, diagonal, and 1 step scenario
with a double step.
@ How strong: separation intensity v € {—1,—0.5,...,2}
(only for logistic scenarios).



Simulation Design

Further variations:
@ Sample size n € {200,500, 1000}.
@ Include 2 additional noise covariates zz and z4, or not.

Technical details:
@ The 2 subgroups are of equal size.
@ 500 datasets per condition.
@ Fitted models: mixture with and without concomitants, and a tree.
@ Selection of K via BIC from K = {1,...,4}.



Simulation Design

Outcome assessment:
@ Hit rate: Rate of selecting more than one subgroup, i.e., splitting
more than once or selecting K > 1.
© Compare estimated clustering to true clustering via Cramér’s
coefficient.

Software:
@ R package flexmix, available at
http://CRAN.R-project.org/package=flexmix

@ R package partykit, available at
http://CRAN.R-project.org/package=partykit


http://CRAN.R-project.org/package=flexmix
http://CRAN.R-project.org/package=partykit

Simulation Results

Here, exemplary results for
@ Coefficients scenario: both.

Sample size: n = 200.

Without noise variables z3 and z,.

Covariates scenarios: axis1 and diagonal with three levels
v ={—1,0, 1} of separation between subgroups, and double
step.

Not shown:

@ Results more pronounced for larger numbers of observations
(n = 500 or 1000) and the other two coefficients scenarios
(intercept and slope).

@ Results less pronounced if the two additional noise covariates are
included, with hit rates dropping slightly stronger for the mixture
than the tree.



Simulation Results: Hit Rate
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Simulation Results: Hit Rate
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Simulation Results: Hit Rate
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Simulation Results: Crameér’s Coefficient

Cramer's coefficient
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Simulation Results: Double Step Scenario
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Summary

@ Both methods are suitable to detect parameter instability (or lack
thereof) and recover the subgroups (if any) but no method
universally outperforms the other.

@ Strong association between subgroups and covariates: The tree is
able to detect smaller differences in the parameters than the
mixtures.

@ Weak association but reasonably strong difference between
parameters: Mixtures outperform the tree.

@ Mixture models can also detect latent subgroups without any
association to covariates.

@ The approximation of a smooth transition between classes through
sample splits works rather well.

@ Our suggestion: Keep both methods in your toolbox.
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