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Introduction

Aim: Access and analyse tracking data from GPS-enabled devices.

Options include:

Plenty of commercial software from manufacturers of devices
(Catapult, Garmin, TomTom, Polar, ...) or apps (endomondo,
Runtastic, Nike+, ...) for different audiences.

Open-source software such as Golden Cheetah which provides a
lot of options for analysis.

R system for statistical computing: open-source with a vast collection of
add-on packages for a large variety of tasks.

However, relatively few packages with a focus on sports and/or
GPS tracking.

Package cycleRtools provides specialised cycling analysis in R.

We aim to provide the infrastructure to handle training data from
running and cycling to leverage the capabilities of R.



Package trackeR

Computational infrastructure: R with add-on packages, mainly zoo for
ordered observations as well as ggplot2 and ggmap for visualisations.

Available from Github via
R> # install.packages("devtools")
R> devtools::install_github("hfrick/trackeR")

Provides functionality for 4 main areas:

read data

process data

summarise & analyse training sessions

visualise training sessions



Read data

Input:
tcx file

readTCX

data frame

trackeRdata

trackeRdata
object

Input:
db3 file

readDB3

readContainer



Process data

All observations:

Basic cleaning, e.g., no negative speeds or distances.

Split observations into training sessions: Any observations further
apart than a specified threshold are considered to belong to
different training sessions. Default is 2 hours.

Per session:

Distances as recorded by the GPS device can be corrected for
elevation if necessary.

Imputation of speeds: Speed 0 is imputed for time periods when
the device is paused.



Imputation of speeds

Either take speed measurements as provided or calculate from
cumulative distances:

Speedj =
Distancej+1 − Distancej

Timej+1 − Timej
. (1)

Remove observations with negative or missing speeds.

Check time stamps of observations for gaps of more than lgap

seconds.

In these gaps, impute m observations with 0 speed, latest position
for latitude, longitude and altitude, and missing values for anything
else.

Add m similar observations at the start and end of the session,
assuming the athlete does not immediately start or stop moving.

Update distances based on imputed speeds via (1).



Imputation of speeds
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Sj
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Example for reading and processing data

Load package and read tcx file:
R> library("trackeR")
R> filepath <- system.file("extdata", "2013-06-04-174137.TCX",
+ package = "trackeR")
R> df <- readTCX(file = filepath, timezone = "GMT")

Process data into trackeRdata object:

R> run <- trackeRdata(df,
+ ## basic information
+ units = NULL, cycling = FALSE,
+ ## separate sessions
+ sessionThreshold = 2,
+ ## elevation correction
+ correctDistances = FALSE, country = NULL, mask = TRUE,
+ ## impute speeds
+ fromDistances = TRUE, lgap = 30, lskip = 5, m = 11)



Example for reading and processing data

Read and process data from a single file in one step:

R> run <- readContainer(file = filepath, type = "tcx",
+ units = NULL, cycling = FALSE, sessionThreshold = 2)

Read and process data from all files in a directory in one step:

R> runs <- readDirectory(directory = "~/path/to/directory/",
+ aggregate = TRUE,
+ speedunit = list(tcx = "m_per_s", db3 = "km_per_h"),
+ distanceunit = list(tcx = "m", db3 = "km"),
+ verbose = TRUE)



Analysis & Visualisation

Visualise sessions:
Plot profiles for speed, pace, elevation level, heart rate, etc.
Plot route taken during a session on various maps.

Summarise sessions.
Common summary statistics such as total distance, duration, time
moving, averages of speed, pace, power, cadence and heart rate,
etc.
Time spent training in specific heart rate or speed zones.

Visualise summaries of sessions.



Visualise sessions
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Visualise sessions
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Visualise sessions
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Visualise sessions
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Visualise sessions
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Summary of session data

R> summary(runs, session = 1)

*** Session 1 ***

Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56
Distance: 14130.7 m
Duration: 1.09 hours
Moving time: 1.07 hours
Average speed: 3.59 m_per_s
Average speed moving: 3.66 m_per_s
Average pace (per 1 km): 4:38 min:sec
Average pace moving (per 1 km): 4:33 min:sec
Average cadence: 88.66 steps_per_min
Average cadence moving: 88.81 steps_per_min
Average power: NA W
Average power moving: NA W
Average heart rate: 141.11 bpm
Average heart rate moving: 141.12 bpm
Average heart rate resting: 135.3 bpm
Work to rest ratio: 48.26



Aggregation of high-frequency data

Records made with high frequency, e.g., 1 or 5 Hz, generating a
fairly big amount of data.

Some summary needed to describe training sessions in a
comparable way.

Scalar summaries: time spent above x% of maximum aerobic
speed, set of quantiles, etc.

However, data are potentially noisy and appropriate degree of
smoothing often is not straightforward.

Training distribution profiles (Kosmidis & Passfield, 2015) extend
the idea of “time spent above”.



Training distribution profile

The distribution profile is defined as the curve {v ,Πu(v)|v ≥ 0} for
each session u lasting tu seconds, with

Πu(v) =

∫ tu

0
I(vu(t) > v)dt

being a function of the variable v under consideration (e.g., speed or
heart rate) and I(·) denoting the indicator function. This describes the
time spent training above a certain threshold.

An observed version of Πu(v) can be calculated as

Pu(v) =
nu∑

j=2

(Tu,j − Tu,j−1)I(Vu,j > v)

which can be conveniently smoothed respecting the positivity and
monotonicity of Πu(v).



Speed profile
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Distribution profile (unsmoothed)
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Distribution profile (smoothed)
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Concentration profile
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Real data example

27 training session by one runner in June 2013.

Data available from
http://www.ucl.ac.uk/~ucakhfr/data/runs_ATI.rda.

Brief summary of the data.

Calculation of distribution and concentration profiles.

Exploratory analysis of speed concentration profiles via functional
principal component analysis.

http://www.ucl.ac.uk/~ucakhfr/data/runs_ATI.rda


Real data example

Load and summarise data:
R> library("trackeR")
R> load("runs.rda")
R> ## summarise sessions
R> runsSummary <- summary(runs)
R> plot(runsSummary, group = c("total", "moving"),
+ what = c("avgSpeed", "distance", "duration", "avgHeartRate"))

Calculate distribution and concentration profiles:
R> dpRuns <- distributionProfile(runs)
R> dpRunsS <- smoother(dpRuns)
R> cpRuns <- concentrationProfile(dpRunsS)
R> plot(cpRuns, multiple = TRUE, smooth = FALSE)



Real data example
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Real data example
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Functional principal components analysis

Goal: explore the structure of variability in the data and describe
characteristic features of the profiles.

Tool: functional principal components analysis (PCA).

Idea: Find a weight function such that it captures most of the
variability. This is called the first principal component (PC) or first
harmonic.

The second PC is chosen to capture most of the remaining
variability, and so on.

Do the components capture interpretable concepts?



Real data example
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Real data example
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Real data example
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Real data example
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Real data example
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Summary & Outlook

Package trackeR provides basic infrastructure in R to read,
process, summarise and analyse running and cycling data from
GPS-enabled devices.

Provides an implementation of training distribution profiles
(Kosmidis & Passfield, 2015) as an aggregation of session data to
functional objects for further analysis.
Further work: Extend infrastructure

Reading capabilities for more formats, e.g., gpx and fit.
More analytic tools for cycling data, e.g., W’, power distribution
profile.
Suggestions welcome!

Further work: Functional data analysis for training distribution
profiles.
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