Tracking data from GPS-enabled devices in R with package 'trackeR'

Hannah Frick, Ioannis Kosmidis
http://www.ucl.ac.uk/~ucakhfr/

Outline

- Introduction
- Package structure and capabilities
- Training distribution profiles
- Real data example
- Summary \& Outlook

Introduction

Aim: Access and analyse tracking data from GPS-enabled devices.
Options include:

- Plenty of commercial software from manufacturers of devices (Catapult, Garmin, TomTom, Polar, ...) or apps (endomondo, Runtastic, Nike+, ...) for different audiences.
- Open-source software such as Golden Cheetah which provides a lot of options for analysis.

R system for statistical computing: open-source with a vast collection of add-on packages for a large variety of tasks.

- However, relatively few packages with a focus on sports and/or GPS tracking.
- Package cycleRtools provides specialised cycling analysis in R.
- We aim to provide the infrastructure to handle training data from running and cycling to leverage the capabilities of R.

Package trackeR

Computational infrastructure: R with add-on packages, mainly zoo for ordered observations as well as ggplot2 and ggmap for visualisations.

Available from Github via
R> \# install.packages("devtools")
R> devtools::install_github("hfrick/trackeR")

Provides functionality for 4 main areas:

- read data
- process data
- summarise \& analyse training sessions
- visualise training sessions

Read data

Process data

All observations:

- Basic cleaning, e.g., no negative speeds or distances.
- Split observations into training sessions: Any observations further apart than a specified threshold are considered to belong to different training sessions. Default is 2 hours.
Per session:
- Distances as recorded by the GPS device can be corrected for elevation if necessary.
- Imputation of speeds: Speed 0 is imputed for time periods when the device is paused.

Imputation of speeds

- Either take speed measurements as provided or calculate from cumulative distances:

$$
\begin{equation*}
\text { Speed }_{j}=\frac{\text { Distance }_{j+1}-\text { Distance }_{j}}{\text { Time }_{j+1}-\text { Time }_{j}} \tag{1}
\end{equation*}
$$

- Remove observations with negative or missing speeds.
- Check time stamps of observations for gaps of more than Igap seconds.
- In these gaps, impute m observations with 0 speed, latest position for latitude, longitude and altitude, and missing values for anything else.
- Add m similar observations at the start and end of the session, assuming the athlete does not immediately start or stop moving.
- Update distances based on imputed speeds via (1).

Imputation of speeds

Example for reading and processing data

Load package and read tcx file:

```
R> library("trackeR")
R> filepath <- system.file("extdata", "2013-06-04-174137.TCX",
+ package = "trackeR")
R> df <- readTCX(file = filepath, timezone = "GMT")
```

Process data into trackeRdata object:
R> run <- trackeRdata(df,
$+\quad$ \#\# basic information
$+\quad$ units $=$ NULL, cycling $=$ FALSE,

+ \#\# separate sessions
$+\quad$ sessionThreshold $=2$,
$+\quad$ \#\# elevation correction
+ correctDistances $=$ FALSE, country $=$ NULL, mask $=$ TRUE,
$+\quad$ \#\# impute speeds
$+\quad$ fromDistances $=$ TRUE, lgap $=30$, lskip $=5, \mathrm{~m}=11$)

Example for reading and processing data

Read and process data from a single file in one step:
R> run <- readContainer (file = filepath, type = "tcx",
$+\quad$ units $=$ NULL, cycling $=$ FALSE, sessionThreshold $=2$)
Read and process data from all files in a directory in one step:

```
R> runs <- readDirectory(directory = "~/path/to/directory/",
+ aggregate = TRUE,
+ speedunit = list(tcx = "m_per_s", db3 = "km_per_h"),
+ distanceunit = list(tcx = "m", db3 = "km"),
+ verbose = TRUE)
```


Analysis \& Visualisation

- Visualise sessions:
- Plot profiles for speed, pace, elevation level, heart rate, etc.
- Plot route taken during a session on various maps.
- Summarise sessions.
- Common summary statistics such as total distance, duration, time moving, averages of speed, pace, power, cadence and heart rate, etc.
- Time spent training in specific heart rate or speed zones.
- Visualise summaries of sessions.

Visualise sessions

Summary of session data

```
R> summary(runs, session = 1)
*** Session 1 ***
    Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56
    Distance: 14130.7 m
    Duration: 1.09 hours
    Moving time: 1.07 hours
    Average speed: 3.59 m_per_s
    Average speed moving: 3.66 m_per_s
    Average pace (per 1 km): 4:38 min:sec
    Average pace moving (per 1 km): 4:33 min:sec
    Average cadence: 88.66 steps_per_min
    Average cadence moving: 88.81 steps_per_min
    Average power: NA W
    Average power moving: NA W
    Average heart rate: 141.11 bpm
    Average heart rate moving: 141.12 bpm
    Average heart rate resting: 135.3 bpm
    Work to rest ratio: 48.26
```


Aggregation of high-frequency data

- Records made with high frequency, e.g., 1 or 5 Hz , generating a fairly big amount of data.
- Some summary needed to describe training sessions in a comparable way.
- Scalar summaries: time spent above $x \%$ of maximum aerobic speed, set of quantiles, etc.
- However, data are potentially noisy and appropriate degree of smoothing often is not straightforward.
- Training distribution profiles (Kosmidis \& Passfield, 2015) extend the idea of "time spent above".

Training distribution profile

The distribution profile is defined as the curve $\left\{v, \Pi_{u}(v) \mid v \geq 0\right\}$ for each session u lasting t_{u} seconds, with

$$
\Pi_{u}(v)=\int_{0}^{t_{u}} I\left(v_{u}(t)>v\right) d t
$$

being a function of the variable v under consideration (e.g., speed or heart rate) and $I(\cdot)$ denoting the indicator function. This describes the time spent training above a certain threshold.
An observed version of $\Pi_{u}(v)$ can be calculated as

$$
P_{u}(v)=\sum_{j=2}^{n_{u}}\left(T_{u, j}-T_{u, j-1}\right) l\left(V_{u, j}>v\right)
$$

which can be conveniently smoothed respecting the positivity and monotonicity of $\Pi_{u}(v)$.

Speed profile

Distribution profile (unsmoothed)

Distribution profile (smoothed)

Concentration profile

Real data example

- 27 training session by one runner in June 2013.
- Data available from http://www.ucl.ac.uk/~ucakhfr/data/runs_ATI.rda.
- Brief summary of the data.
- Calculation of distribution and concentration profiles.
- Exploratory analysis of speed concentration profiles via functional principal component analysis.

Real data example

Load and summarise data:
R> library("trackeR")
R> load("runs.rda")
R> \#\# summarise sessions
R> runsSummary <- summary (runs)
R> plot(runsSummary, group = c("total", "moving"),

Calculate distribution and concentration profiles:
R> dpRuns <- distributionProfile(runs)
R> dpRunsS <- smoother (dpRuns)
R> cpRuns <- concentrationProfile(dpRunsS)
R> plot(cpRuns, multiple = TRUE, smooth = FALSE)

Real data example

Real data example

Functional principal components analysis

- Goal: explore the structure of variability in the data and describe characteristic features of the profiles.
- Tool: functional principal components analysis (PCA).
- Idea: Find a weight function such that it captures most of the variability. This is called the first principal component (PC) or first harmonic.
- The second PC is chosen to capture most of the remaining variability, and so on.
- Do the components capture interpretable concepts?

Real data example

Real data example

PCA function 1 (Percentage of variability 62.7)

Real data example

PCA function 2 (Percentage of variability 24.8)

Real data example

Real data example

Summary \& Outlook

- Package trackeR provides basic infrastructure in R to read, process, summarise and analyse running and cycling data from GPS-enabled devices.
- Provides an implementation of training distribution profiles (Kosmidis \& Passfield, 2015) as an aggregation of session data to functional objects for further analysis.
- Further work: Extend infrastructure
- Reading capabilities for more formats, e.g., gpx and fit.
- More analytic tools for cycling data, e.g., W', power distribution profile.
- Suggestions welcome!
- Further work: Functional data analysis for training distribution profiles.

References

Golden Cheetah
http://www.goldencheetah.org/
Mackie J (2015). cycleRtools: Tools for Cycling Data Analysis.
R package version 1.0.4.
https://github.com/jmackie4/cycleRtools
Kosmidis I, Passfield L (2015). "Linking the Performance of Endurance Runners to Training and Physiological Effects via Multi-Resolution Elastic Net." ArXiv e-print arXiv:1506.01388.

