
Tracking data from GPS-enabled devices in R with
package ’trackeR’

Hannah Frick, Ioannis Kosmidis

http://www.ucl.ac.uk/~ucakhfr/

http://www.ucl.ac.uk/~ucakhfr/

Outline

Introduction

Package structure and capabilities

Training distribution profiles

Real data example

Summary & Outlook

Introduction

Aim: Access and analyse tracking data from GPS-enabled devices.

Options include:

Plenty of commercial software from manufacturers of devices
(Catapult, Garmin, TomTom, Polar, ...) or apps (endomondo,
Runtastic, Nike+, ...) for different audiences.

Open-source software such as Golden Cheetah which provides a
lot of options for analysis.

R system for statistical computing: open-source with a vast collection of
add-on packages for a large variety of tasks.

However, relatively few packages with a focus on sports and/or
GPS tracking.

Package cycleRtools provides specialised cycling analysis in R.

We aim to provide the infrastructure to handle training data from
running and cycling to leverage the capabilities of R.

Package trackeR

Computational infrastructure: R with add-on packages, mainly zoo for
ordered observations as well as ggplot2 and ggmap for visualisations.

Available from Github via
R> # install.packages("devtools")
R> devtools::install_github("hfrick/trackeR")

Provides functionality for 4 main areas:

read data

process data

summarise & analyse training sessions

visualise training sessions

Read data

Input:
tcx file

readTCX

data frame

trackeRdata

trackeRdata
object

Input:
db3 file

readDB3

readContainer

Process data

All observations:

Basic cleaning, e.g., no negative speeds or distances.

Split observations into training sessions: Any observations further
apart than a specified threshold are considered to belong to
different training sessions. Default is 2 hours.

Per session:

Distances as recorded by the GPS device can be corrected for
elevation if necessary.

Imputation of speeds: Speed 0 is imputed for time periods when
the device is paused.

Imputation of speeds

Either take speed measurements as provided or calculate from
cumulative distances:

Speedj =
Distancej+1 − Distancej

Timej+1 − Timej
. (1)

Remove observations with negative or missing speeds.

Check time stamps of observations for gaps of more than lgap

seconds.

In these gaps, impute m observations with 0 speed, latest position
for latitude, longitude and altitude, and missing values for anything
else.

Add m similar observations at the start and end of the session,
assuming the athlete does not immediately start or stop moving.

Update distances based on imputed speeds via (1).

Imputation of speeds

Tj Tj+1

Tj∗ + h Tj∗ + 2h ...

Sj

0 ...

Sj+1

Tj

Sj Sj+1

Tj+1 − Tj > lgap

lskip lskip

Tj+1

0 0

Tj∗ Tj∗+1

0

Example for reading and processing data

Load package and read tcx file:
R> library("trackeR")
R> filepath <- system.file("extdata", "2013-06-04-174137.TCX",
+ package = "trackeR")
R> df <- readTCX(file = filepath, timezone = "GMT")

Process data into trackeRdata object:

R> run <- trackeRdata(df,
+ ## basic information
+ units = NULL, cycling = FALSE,
+ ## separate sessions
+ sessionThreshold = 2,
+ ## elevation correction
+ correctDistances = FALSE, country = NULL, mask = TRUE,
+ ## impute speeds
+ fromDistances = TRUE, lgap = 30, lskip = 5, m = 11)

Example for reading and processing data

Read and process data from a single file in one step:

R> run <- readContainer(file = filepath, type = "tcx",
+ units = NULL, cycling = FALSE, sessionThreshold = 2)

Read and process data from all files in a directory in one step:

R> runs <- readDirectory(directory = "~/path/to/directory/",
+ aggregate = TRUE,
+ speedunit = list(tcx = "m_per_s", db3 = "km_per_h"),
+ distanceunit = list(tcx = "m", db3 = "km"),
+ verbose = TRUE)

Analysis & Visualisation

Visualise sessions:
Plot profiles for speed, pace, elevation level, heart rate, etc.
Plot route taken during a session on various maps.

Summarise sessions.
Common summary statistics such as total distance, duration, time
moving, averages of speed, pace, power, cadence and heart rate,
etc.
Time spent training in specific heart rate or speed zones.

Visualise summaries of sessions.

Visualise sessions

5: 2013−06−05 6: 2013−06−06

90

120

150

2

4

6

8

10

heart.rate [bpm
]

pace [m
in_per_km

]

05
:3

0

05
:4

0

05
:5

0

06
:0

0

11
:5

0

12
:0

0

12
:1

0

12
:2

0

12
:3

0

12
:4

0

time

Visualise sessions

5: 2013−06−05 6: 2013−06−06

0

25

50

75

0

2

4

6

altitude [m
]

speed [m
_per_s]

05
:3

0

05
:4

0

05
:5

0

06
:0

0

11
:5

0

12
:0

0

12
:1

0

12
:2

0

12
:3

0

12
:4

0

time

Visualise sessions

0

2

4

6

05
:3

0

05
:4

0

05
:5

0

06
:0

0

time

sp
ee

d
[m

_p
er

_s
]

Visualise sessions

0

2

4

6

05
:3

0

05
:4

0

05
:5

0

06
:0

0

time

sp
ee

d
[m

_p
er

_s
]

Visualise sessions

41.35

41.36

41.37

41.38

41.39

2.14 2.15 2.16 2.17 2.18
longitude

la
tit

ud
e

0

2

4

6

speed

Summary of session data

R> summary(runs, session = 1)

*** Session 1 ***

Session times: 2013-06-01 17:32:15 - 2013-06-01 18:37:56
Distance: 14130.7 m
Duration: 1.09 hours
Moving time: 1.07 hours
Average speed: 3.59 m_per_s
Average speed moving: 3.66 m_per_s
Average pace (per 1 km): 4:38 min:sec
Average pace moving (per 1 km): 4:33 min:sec
Average cadence: 88.66 steps_per_min
Average cadence moving: 88.81 steps_per_min
Average power: NA W
Average power moving: NA W
Average heart rate: 141.11 bpm
Average heart rate moving: 141.12 bpm
Average heart rate resting: 135.3 bpm
Work to rest ratio: 48.26

Aggregation of high-frequency data

Records made with high frequency, e.g., 1 or 5 Hz, generating a
fairly big amount of data.

Some summary needed to describe training sessions in a
comparable way.

Scalar summaries: time spent above x% of maximum aerobic
speed, set of quantiles, etc.

However, data are potentially noisy and appropriate degree of
smoothing often is not straightforward.

Training distribution profiles (Kosmidis & Passfield, 2015) extend
the idea of “time spent above”.

Training distribution profile

The distribution profile is defined as the curve {v ,Πu(v)|v ≥ 0} for
each session u lasting tu seconds, with

Πu(v) =

∫ tu

0
I(vu(t) > v)dt

being a function of the variable v under consideration (e.g., speed or
heart rate) and I(·) denoting the indicator function. This describes the
time spent training above a certain threshold.

An observed version of Πu(v) can be calculated as

Pu(v) =
nu∑

j=2

(Tu,j − Tu,j−1)I(Vu,j > v)

which can be conveniently smoothed respecting the positivity and
monotonicity of Πu(v).

Speed profile

0.0

2.5

5.0

7.5
09

:0
0

09
:1

5

09
:3

0

09
:4

5

10
:0

0

time

sp
ee

d
[m

_p
er

_s
]

Distribution profile (unsmoothed)

0

1000

2000

3000

0 4 8 12
speed

tim
e

sp
en

t a
bo

ve
 th

re
sh

ol
d

Distribution profile (smoothed)

0

1000

2000

3000

0 4 8 12
speed

tim
e

sp
en

t a
bo

ve
 th

re
sh

ol
d

Concentration profile

0

25

50

75

0 4 8 12
speed

dt
im

e

Real data example

27 training session by one runner in June 2013.

Data available from
http://www.ucl.ac.uk/~ucakhfr/data/runs_ATI.rda.

Brief summary of the data.

Calculation of distribution and concentration profiles.

Exploratory analysis of speed concentration profiles via functional
principal component analysis.

http://www.ucl.ac.uk/~ucakhfr/data/runs_ATI.rda

Real data example

Load and summarise data:
R> library("trackeR")
R> load("runs.rda")
R> ## summarise sessions
R> runsSummary <- summary(runs)
R> plot(runsSummary, group = c("total", "moving"),
+ what = c("avgSpeed", "distance", "duration", "avgHeartRate"))

Calculate distribution and concentration profiles:
R> dpRuns <- distributionProfile(runs)
R> dpRunsS <- smoother(dpRuns)
R> cpRuns <- concentrationProfile(dpRunsS)
R> plot(cpRuns, multiple = TRUE, smooth = FALSE)

Real data example

● ●

● ●

●

●
●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●
●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

● ● ●
●

●

●

● ●

●

●
● ●

●

●

●

● ●

● ●

●

● ●

● ●

●

●
●

● ● ● ●
● ●

● ●
● ●

● ● ●

●
●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

● ●
● ●

●

●

●

●

120
130
140
150
160
170

2

3

4

5

10000

20000

40

80

120

160

avgH
eartR

ate [bpm
]avgS

peed [m
_per_s]

distance [m
]

duration [m
in]

Jun 03 Jun 10 Jun 17 Jun 24 Jul 01
Date

type

●

●

total

moving

Real data example

heart.rate [bpm] speed [m_per_s]

0

200

400

0 50 100 150 200 250 0 4 8 12

dt
im

e
Session3

Session4

Session5

Session6

Session7

Session8

Session9

Session10

Session11

Session12

Session13

Session14

Session15

Session16

Session17

Session18

Session19

Session20

Session21

Session22

Session23

Session24

Session25

Functional principal components analysis

Goal: explore the structure of variability in the data and describe
characteristic features of the profiles.

Tool: functional principal components analysis (PCA).

Idea: Find a weight function such that it captures most of the
variability. This is called the first principal component (PC) or first
harmonic.

The second PC is chosen to capture most of the remaining
variability, and so on.

Do the components capture interpretable concepts?

Real data example

1 2 3 4

Principal component

S
ha

re
 o

f v
ar

ia
nc

e
ca

pt
ur

ed
 [%

]

0
10

20
30

40
50

60

Real data example

0 2 4 6 8 10 12

0
50

10
0

15
0

PCA function 1 (Percentage of variability 62.7)

argvals

H
ar

m
on

ic
 1

+++++++++++++++++++++++
+++

++
+
+
+
+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+
+
+
+
+++−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−
−−

−−
−−

−−
−−−

Real data example

0 2 4 6 8 10 12

0
20

40
60

80
10

0
12

0
PCA function 2 (Percentage of variability 24.8)

argvals

H
ar

m
on

ic
 2

+++++++++++++++++++++
+++

++
+
+
+
+
+

+

+

+

+

+

+
++

+

+

+

+

+
+
+
++−−−−−−−−−−−−−−−−−−−−−−−−−

−−−
−−

−
−
−
−
−

−

−

−

−

−

−

−−
−

−

−

−

−

−

−
−
−
−−

Real data example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−50

0

50

100

20 40 60 80 100
durationMoving

sp
ee

d_
pc

1

Real data example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

−50

0

50

3.5 4.0 4.5 5.0 5.5
avgSpeedMoving

sp
ee

d_
pc

2

Summary & Outlook

Package trackeR provides basic infrastructure in R to read,
process, summarise and analyse running and cycling data from
GPS-enabled devices.

Provides an implementation of training distribution profiles
(Kosmidis & Passfield, 2015) as an aggregation of session data to
functional objects for further analysis.
Further work: Extend infrastructure

Reading capabilities for more formats, e.g., gpx and fit.
More analytic tools for cycling data, e.g., W’, power distribution
profile.
Suggestions welcome!

Further work: Functional data analysis for training distribution
profiles.

References

Golden Cheetah
http://www.goldencheetah.org/

Mackie J (2015). cycleRtools: Tools for Cycling Data Analysis.
R package version 1.0.4.
https://github.com/jmackie4/cycleRtools

Kosmidis I, Passfield L (2015). “Linking the Performance of Endurance
Runners to Training and Physiological Effects via Multi-Resolution
Elastic Net.” ArXiv e-print arXiv:1506.01388.

http://www.goldencheetah.org/
https://github.com/jmackie4/cycleRtools

	 Tracking data from GPS-enabled devices in R with package 'trackeR'
	Introduction

