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Introduction

@ Latent traits measured through probabilistic models for item
response data.

@ Here, Rasch model for binary items.

@ Crucial assumption of measurement invariance: All items measure
the latent trait in the same way for all subjects.

@ Check for heterogeneity in (groups of) subjects, either based on
observed covariates or unobserved latent classes.

@ Mixtures of Rasch models to address heterogeneity in latent
classes.



Rasch Model

Probability for person i to solve item j:

exp{y;(0i — 5;)}
1+ exp{@i — ﬁ/} ’

@ y;: Response by person j to item j.

P(Yj = yjl0i, 8;) =

@ 0;: Ability of person i.
@ [3;: Difficulty of item .

By construction:
@ No covariates, all information is captured by ability and difficulty.

@ Both parameters 6 and 3 are on the same scale: If 8y > 52, then
item 1 is more difficult than item 2 for all subjects.

Central assumption of measurement invariance needs to be checked
for both manifest and latent subject groups.



Rasch Model: Estimation

@ Joint estimation of # and j3 is inconsistent.

@ Conditional ML estimation: Use factorization of the full likelihood
on basis of the scores r; = Zj'L Vi

Lo,8) = f(yl6,5)
= h(y|r,0,8)g(r|0,B)
= h(ylr, B)g(r|0, B).

Estimate 3 from maximization of h(y|r, /3).

@ Also maximizes L(¢, 3) if g(r|-) is assumed to be independent of ¢
and [3; but potentially depending on auxiliary parameters d: g(r|d).



Mixture Models

@ Assumption: Data stems from different classes but class
membership is unknown.

@ Modeling tool: Mixture models.

@ Mixture model = > weight x component.

@ Components represent the latent classes. They are densities or
(regression) models.

@ Weights are a priori probabilities for the components/classes,
treated either as parameters or modeled through concomitant
variables.



Rasch Mixture Models: Framework

Full mixture:

@ Weights: Either (non-parametric) prior probabilities 7, or
weights 7(k|x, «) based on concomitant variables x, e.g., a
multinomial logit model.

@ Components: Conditional likelihood for item parameters and
specification of score probabilities

n K
f(ylm, o, 8,8) = [ D w(kIxi, @) h(yilr, B) 9(rildk)-

i=1 k=1

@ Estimation of all parameters via ML through the EM algorithm.



Rasch Mixture Models: Score Probabilities

@ Original proposition by Rost (1990): Discrete distribution with
parameters (probabilities) g(r) = V,.

@ Number of parameters necessary is potentially very high:
(number of items - 1) x (number of components).

@ More parsimonious: Assume parametric model on score
probabilities, e.g., using mean and variance parameters.

@ General approach: Conditional logit model encompassing the
original saturated parameterization and a mean/variance
parameterization (with only two parameters per component) as
special cases

exp{z,' 6}

S exp{zf 0}

g(rld) =



Rasch Mixture Models: Score Probabilities

Motivation: When checking for measurement invariance, items are of
interest, not the scores.

Idea: Use
g(r) = constant

Equivalent to: Score distribution is the same over all components.

Interpretation:
@ Score distribution is irrelevant to the mixture.

@ Consequently, the mixture is only influenced by latent classes
regarding the item parameters.

@ Differences in the score distribution (if any) do not influence the
mixture, neither if coincident with differences in the item
parameters nor if w.r.t. other classes.



Rasch Mixture Models: Score Models

Mean/variance:
@ Parsimonious: 2 parameters per class.
@ Mixture might catch on to latent score groups, even when no
differential item functioning (DIF) is present.
Saturated:
@ Non-identified if no DIF present, as a mixture of multinomial
models is itself a multinomial model.
@ Possibly too many parameters to detect moderate DIF.

Constant:
@ Mixture only influenced by latent groups in items (i.e., DIF), yet
parsimonious.
@ Potentially less accurate if latent groups are present in both scores
and items — and the groups coincide.

@ Trade accuracy for robustness.



Software

@ Available in R in package psychomix at
http://CRAN.R-project.org/package=psychomix

@ Based on package flexmix (Griin and Leisch, 2008) for flexible
estimation of mixture models.

@ Based on package psychotools for estimation of Rasch models.

@ Frick et al. (2011), provides implementation details and hands-on
practical guidance. See also vignette("raschmix", package
= "psychomix").


http://CRAN.R-project.org/package=psychomix

Illustration: No DIF

Data generating process:
@ m = 20 items, n = 100 subjects.
@ No DIF: all item difficulties 3 = 0.
@ Differences in scores through 2 different abilities: {—1.8, 1.8}.
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Illustration: No DIF
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Figure: Mixture Rasch model with 1 to 2 classes and a meanvar (left) and a
constant (right) specification of the score model.



Illustration: No DIF
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Figure: Estimated item parameters (left) and score probabilities with empirical
score distribution (right) of the 2-class Rasch mixture model with a meanvar
score specification.



Illustration: Moderate DIF

Data generating process:
@ m = 20 items, n = 1000 subjects.
@ 2items with DIF: 5 = (—1.2,1.2) and § = (1.2,—1.2),
all other items with 8 = 0.
@ All abilities 6 = 0.
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Figure: Estimated item difficulties for whole sample and in both subsamples.
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Illustration: Moderate DIF

saturated score model constant score model
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Figure: Mixture Rasch model with 1 to 2 classes and a saturated (left) and a
constant (right) specification of the score model.



Illustration: Moderate DIF
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Figure: Estimated item difficulties in a 2-class Rasch mixture model with a
constant score model.



Application: Verbal Aggression Data

Behavioral study of psychology students: 243 women and 73 men.
Description of frustrating situations:

e S1: A bus fails to stop for me.
e S2: | miss a train because a clerk gave me faulty information.

Behavioral mode: Want or do.

Verbally aggressive response: Curse, scold, or shout.

12 resulting items: S1WantCurse, S1DoCurse, S1WantScold, ...,
S2WantShout, S2DoShout

Covariates: Gender and an anger score.



Verbal Aggression: Analysis

Fit model:

R> set.seed(1)

R> mix <- raschmix(resp2 ~ 1, data = val2, k = 1:4,

+ scores = "constant", nrep = 5)

R> mixC <- raschmix(resp2 ~ gender + anger, data = val2,
+ k = 2:4, scores = "constant", nrep = 5)

Select model:
R> rbind(mix = BIC(mix), mixC = c(NA, BIC(mixC)))

1 2 3 4
mix 3881.065 3854.193 3847.796 3865.268
mixC NA 3861.127 3850.129 3867.554

R> val2_mix <- getModel(mixC, which = "3")

Plot item profiles and effects of concomitant variables:

R> xyplot(val2_mix)
R> effectsplot(val2_mix)



Verbal aggression: Iltem profiles
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Figure: Item difficulty profiles for the 3-component Rasch mixture model.
Items 1-6: Situation S1 (bus). ltems 7—12: Situation S2 (train).
Order: want/do curse, want/do scold, want/do shout.




Verbal aggression: Effects displays
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Figure: Effect plots for the concomitant variables gender and age in a
3-component Rasch mixture model.



Verbal Aggression: Summary

@ Number of components: 3 different sets of item parameters
necessary.

@ Relationship between items differs between the latent classes.

@ For shouting: Want is less extreme than do. For cursing and
scolding, this depends on the latent class.

@ One class does not differentiate much between the items, for the
two other classes, cursing/scolding/shouting is increasingly
extreme.

@ Some dependence on covariates gender and anger score (albeit
slightly poorer BIC).



Summary

@ Mixture Rasch models are a flexible means to check for
measurement invariance.

@ General framework incorporates concomitant variable models for
mixture weights along with various score models.

@ Newly introduced constant score model: robust and parsimonious.
@ Implementation in R package psychomix.
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