
Mixture Models in Statistics and

Psychometrics – Detecting Subgroups

and Differential Item Functioning

PhD Thesis

in Mathematics

Faculty of Mathematics, Computer Science

and Physics, Universität Innsbruck

by

Hannah Frick

Advisors:

Achim Zeileis, Carolin Strobl, and Christel Geiss

Innsbruck, August 2014



Suggested reviewing committee:

1. Bettina Grün, Johannes Kepler Universität Linz

2. Carolin Strobl, Universität Zürich
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Abstract

Mixture models are a flexible tool to uncover latent groups for which separate models
hold. The Rasch model can be used to measure latent traits by modeling the probability
of a subject solving an item through the subject’s ability and the item’s difficulty. A
crucial assumption of the Rasch model is measurement invariance: each item measures
the latent trait in the same way for all subjects. Measurement invariance is violated if,
e.g., an item is of different difficulty for different (groups of) subjects. Mixtures of Rasch
models can be used to check if one Rasch model with a single set of item difficulties holds
for all subjects and thus measurement invariance is not violated. However, estimation
of the item difficulties in a Rasch mixture model is not independent of the specification
of the score distribution, which is based on the abilities. The latent groups detected
with such a Rasch mixture model are not solely based on the item difficulties but also
– or even only – the scores and thus subject abilities. If the aim is to detect violations
of measurement invariance, only latent groups based on item difficulties are of interest
because different ability groups do not infringe on measurement invariance.

This thesis aims at making three different yet connected contributions: The method-
ological, psychometric contribution is a new specification of the Rasch mixture model. It
ensures that latent classes uncovered by a Rasch mixture model are based solely on the
item difficulties and thus increases the model’s suitability as a tool to detect violations
of measurement invariance. The computational contribution is open-source software in
form of the R package psychomix for estimation of various flavors of the Rasch mixture
model with or without concomitant variables and several options for the score distribu-
tion including the newly suggested specification. The statistical contribution connects
and compares mixture models to model-based recursive partitioning. This is another
method to detect subgroups in the data for which a stable set of model parameters
holds and has also been applied to Rasch models to detect violations of measurement
invariance. Here, mixture models and model-based recursive partitioning are presented
in a unifying framework and the relative (dis-)advantages are illustrated in a simulation
study.
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Chapter 1

Introduction

1.1 Mixture models

A very general and very common assumption in statistics is that all observations of
a sample stem from the same distribution. However, sometimes a sample consists of
data from different groups, which do not necessarily all follow the same distribution and
group membership is unknown. In such situations, mixture models are an adequate and
popular tool (McLachlan and Peel, 2000, Chapter 1). One of the first major applications
of mixture models was the analysis by Pearson (1894). His colleague Weldon (1893)
collected the forehead to body length ratio of crabs sampled from the Bay of Naples and
suspected from the asymmetry in the histogram that two subspecies were evolving. To
account for both, the asymmetry and the two (suspected) subspecies, Pearson fitted a
weighted mixture of two normal densities to the data. Each density represented one of
the two subspecies and had its own mean and variance. The resulting mixture density
fitted the histogram considerably better than a single normal density.

The basic form of a mixture model is a weighted sum over several components. In the
example of the crabs data, those components are plain densities. However, statistical
models can also be used as such components. If the component is, e.g., a normal distribu-
tion and its mean is specified to depend on a set of covariates through a linear predictor,
the component is also a linear model (McLachlan and Peel, 2000, Chapter 3.6). In such
cases, the components do not only represent different groups with different means (as
in the crabs example), but since the mean depends on covariates, the different groups
can also be described in terms of this relationship between response and regressors. As
each group is described through its component, each group can be described through its
corresponding statistical model. Or in other words, a different model holds for each of
the groups in the data. Note that since mixture models are usually employed with a
finite number of components, finite mixture models are commonly referred to as mixture
models.

These groups in the data are considered latent as group membership is unknown and not
determined by any covariates – covariates employed within component models do not
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directly determine which observations belong to which group. Posterior probabilities of
belonging to a component (or the latent class it represents) can be derived for every ob-
servation. If additional covariates are available which influence group membership rather
than the relationship modeled within each component, they can be incorporated in the
mixture model through a so-called concomitant variable model (Dayton and Macready,
1988). A common choice for such a concomitant variable model is a multinomial logit
model. The resulting probabilities are used as weights for the components in the mixture
model.

Mixture models constitute a flexible tool to model data for which one model with one set
of parameters is not adequate. However, it can also be used to check if such a deviation
from one model with a single set of parameters is necessary. This is usually done by
comparing the fit of a single model to that of mixture models with several components
via an information criterion such as the Akaike Information Criterion (AIC, Akaike,
1973) or Schwarz’s Bayesian Information Criterion (BIC, Schwarz, 1978). Note that
regularity conditions for the likelihood ratio test are not fulfilled (McLachlan and Peel,
2000, Chapter 6.4).

Here, the focus will be on determining whether or not latent groups are present in the
data which require different model parameters. In a broader statistical context this topic
is also referred to as parameter stability whereas in the field of psychometrics it is often
approached in the context of measurement invariance.

1.2 Measuring latent traits with the Rasch model

To measure latent traits such as intelligence, knowledge (be it of a specific form or
general knowledge), mathematical or reading skills as in the PISA study, etc., subjects
are usually asked to respond to a set of items, e.g., through a questionnaire which is then
referred to as a psychological test or an instrument. Item response theory provides several
models for estimating such a latent trait. The Rasch model (Rasch, 1960) is the state-
of-the-art model for binary items, which will be the focus here. For polytomous items,
several extensions of the Rasch model exist, which include the rating scale model (RSM,
Andrich, 1978) and the partial credit model (PCM, Masters, 1982).

In the Rasch model, the probability of a subject to solve an item is based on the subject’s
ability – the latent trait – and the item’s difficulty. A Rasch model thus contains two
types of parameters: person and item parameters for abilities and difficulties, respec-
tively. Joint estimation of both types of parameters is inconsistent for a fixed number
of items (Molenaar, 1995a). Two alternative approaches have been developed, which
both aim at untangling the problem by transforming the likelihood so that first the item
parameters and then the person parameters can be estimated. In the marginal maximum
likelihood (MML) approach (e.g., Molenaar, 1995a), a distribution across abilities is as-
sumed and used to drop the person parameters from the joint likelihood via integration.
In the conditional maximum likelihood (CML) approach (e.g., Molenaar, 1995a), the
person parameters are shed by conditioning on a sufficient statistic for the abilities, the
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so-called scores. The score of a subject is the number of correctly solved items. The joint
likelihood can then be split into two parts: one part conditional on the scores which does
not depend on the person parameters and is thus used to estimate the item parameters,
and the second part for the conditioning scores. Here, the CML approach is adopted
as no assumption on the distribution of the abilities – or the scores – needs to be made
in order to estimate the item difficulties. Given estimates for the item parameters, the
person parameters are estimated in a second step.

If the Rasch model is used as a measurement tool, one is mainly interested in the ability
parameters as they are the estimates for the subjects’ latent traits. However, in order to
make fair comparisons between subjects based on these estimates, the crucial assumption
of measurement invariance needs to be fulfilled: each item needs to measure the latent
trait in the same way for all subjects. This is violated if, e.g., an item is of different
difficulty for different (groups of) subjects. Difficulty may (and should, for a good in-
strument) vary across items but no item may vary in its difficulty across subjects. If this
is the case for an item, this is usually referred to as differential item functioning (DIF)
and is a violation of the assumption of measurement invariance. From a statistical view-
point this can also be seen as parameter instability since one item difficulty (parameter)
does not hold for all subjects if the item is easier for some subjects and more difficult for
others. In order to avoid unfair comparisons between subjects, all items of an instrument
are checked for such violations like DIF. Many tests are available to establish whether or
not DIF is present. Some tests such as the Mantel-Haenszel test (Holland and Thayer,
1988) are item-wise tests which test each item separately for DIF. Global tests such as
the likelihood ratio (LR) test (Andersen, 1972; Gustafsson, 1980) assess a set of item
difficulties (e.g., for all items of a questionnaire) at once for DIF in any of the items. An
alternative approach for DIF detection are mixture models.

1.3 Mixtures of Rasch models

As indicated earlier, mixtures of Rasch models (Rost, 1990) can be seen as a tool to
relax the assumption of measurement invariance by allowing for several sets of item
difficulties instead of just one set which is required to hold for all observations. However,
it can also be seen as a tool to investigate whether this is necessary in the first place.
It follows the straightforward rationale that if a mixture of Rasch models (with two or
more components) fits the data better than a single Rasch model, the data consist of
several groups of subjects for which different Rasch models hold. Therefore, measurement
invariance is violated and a single Rasch model is not applicable to the data.

In its basic form a Rasch mixture model is a weighted sum over several Rasch models.
On the basis of the CML approach, the Rasch models are written as the product of
the conditional likelihood of the item difficulties and the score probabilities. In the
introduction of Rasch mixture models, Rost (1990) suggested a saturated parametrization
of the score distribution with one probability parameter for each possible score. This can
be challenging in model estimation and/or model selection. Thus, a more parsimonious
parametrization has been suggested by Rost and von Davier (1995), which uses only two
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parameters: one for the mean and one for the variance.

While Rasch mixture model do not constitute a significance test like the DIF tests
mentioned above, they have the advantage of detecting latent DIF groups. For the DIF
tests, the groups which are tested against need to be pre-specified and are usually based
on covariates such as gender and (categorized) age. Rasch mixture models, however, do
not a priori assume specific (DIF) groups but rather establish them in a data-driven way
(Rost and von Davier, 1995). In particular, the detection of latent classes can also be
achieved if only the item responses are available but no additional covariates.

1.4 Software for Rasch mixture models

Rasch models can be fitted through a large variety of software, whereas the selection is
smaller for mixtures of Rasch models. Software for all major platforms is available, how-
ever, not all programs are available for all platforms. Among the commercial programs,
WINMIRA 2001 (von Davier, 2000) is one of the most well-known options. Among
the open-source options, the R system for statistical computing (R Core Team, 2014),
available for all major platforms, is one of the most versatile tools for statistical analysis
and beyond. A base distribution is provided by the R Core Team and add-on packages
for a large variety of tasks are contributed by numerous useRs. Two notable examples
for fitting Rasch models are the packages eRm (Mair and Hatzinger, 2007) and ltm
(Rizopoulos, 2006). Rasch mixture models can be fitted with the packages mixRasch
(Willse, 2011) and mRm (Preinerstorfer and Formann, 2011), using joint and conditional
maximum likelihood estimation, respectively. Unfortunately, neither package allows for
different score specifications or the inclusion of concomitant variables. To close this gap,
the psychomix package (Frick, Strobl, Leisch, and Zeileis, 2012) leverages the framework
for mixture models (including concomitant variable models) provided by the flexmix
package (Leisch, 2004; Grün and Leisch, 2008) together with the psychotools package
(Zeileis, Strobl, and Wickelmaier, 2011) for estimating psychometric models. The op-
tions for different specifications of the score distribution are implemented directly in the
psychomix package. Chapter 2 is a slightly modified version of Frick et al. (2012) which
contains an introduction to the package, implementation details and hands-on guidance
for practical use.

1.5 Specification of the score distribution

For a single Rasch model, the CML approach allows for an estimation of the item pa-
rameters without a specification of the score distribution. In the context of a Rasch
mixture model, however, the estimation of the item difficulties is not independent of the
score distribution. As the components of a Rasch mixture model are full Rasch models,
the components are made up by both parts of the factorized likelihood, the conditional
likelihood of the item parameters and the score distribution. The estimation of the Rasch
mixture model is therefore influenced by both difficulties and abilities. In the context of
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DIF detection, this not desirable because only latent groups based on the item difficulties
are of interest. Latent ability groups based on the person parameters are possible but
not a violation of measurement invariance (Ackerman, 1992).

Chapter 3 is a slightly modified version of Frick, Strobl, and Zeileis (2014a). It is ex-
plained how the score distribution influences the estimation of the Rasch mixture model
– even if the CML approach is employed – and a new specification of the score distri-
bution is suggested which restores the independence of item parameter estimation from
the specification of the score distribution in Rasch mixture models. The basic idea is
to restrict the score distribution to be equal across all components of the mixture. This
corresponds to a mixture of just the conditional likelihoods of the item parameters as
the score distribution is not component-specific and thus does not influence the mixture.
The resulting latent classes are then based on the item parameters only and thus cor-
responds to DIF groups only. The accompanying simulation study illustrates how DIF
detection via Rasch mixture models with a saturated or mean-variance specification for
the scores can be misleading if ability groups are present in the data. It also illustrates
how this can be avoided by the restricted score distribution. The implementation of all
discussed specifications for the score distribution, including the restricted specification,
are included in the psychomix package.

1.6 Beyond mixtures: Detecting subgroups with tree

models

The first aim of DIF detection, of course, is to decide if any DIF, and thus any DIF
groups, is present in the data. In a second step, it is usually of interest which subjects
are in which DIF group and how those can be described through covariates. This can be
done in a post-hoc analysis once group membership is estimated/established. In the con-
text of mixture model, this can also be part of the initial analysis when such covariates
are included through a concomitant variable model. Subjects then have different prob-
abilities of belonging to a certain DIF group based on their covariates characteristics.
Another fairly recent approach to detect DIF, which also establishes DIF groups in a
data-driven way, are Rasch trees (Strobl, Kopf, and Zeileis, 2014). In this approach, the
sample is split into DIF groups based on covariates such that for each group one set of
item difficulties holds. Since this method uses significance tests to determine whether or
not to split the sample, it may seem more closely related to classical DIF tests than Rasch
mixture models. Nonetheless, it shares a lot of similarities with Rasch mixture models.
Both methods can be embedded in a larger statistical framework, namely mixture models
and model-based recursive partitioning (Zeileis, Hothorn, and Hornik, 2008).

Chapter 4 is a slightly modified version of Frick, Strobl, and Zeileis (2014b) and gives a
brief introduction to both frameworks. The basic ideas are explained and illustrated via
the linear model. The differences and similarities between the two methods are pointed
out and systematically investigated by means of a simulation study. The results suggest
that neither method universally outperforms the other and thus both methods should
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be part of a statistical toolbox for assessing parameter stability and model assumptions.
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Chapter 2

Flexible Rasch Mixture Models with
Package psychomix

This chapter is a (slightly) modified version of Frick et al. (2012), published in the
Journal of Statistical Software.

Abstract:
Measurement invariance is an important assumption in the Rasch model and mixture
models constitute a flexible way of checking for a violation of this assumption by detecting
unobserved heterogeneity in item response data. Here, a general class of Rasch mixture
models is established and implemented in R, using conditional maximum likelihood esti-
mation of the item parameters (given the raw scores) along with flexible specification of
two model building blocks: (1) Mixture weights for the unobserved classes can be treated
as model parameters or based on covariates in a concomitant variable model. (2) The
distribution of raw score probabilities can be parametrized in two possible ways, either
using a saturated model or a specification through mean and variance. The function
raschmix() in the R package psychomix provides these models, leveraging the general
infrastructure for fitting mixture models in the flexmix package. Usage of the function
and its associated methods is illustrated on artificial data as well as empirical data from
a study of verbally aggressive behavior.

2.1 Introduction

In item response theory (IRT), latent traits are usually measured by employing prob-
abilistic models for responses to sets of items. One of the most prominent examples
for such an approach is the Rasch model (Rasch, 1960) which captures the difficulty (or
equivalently easiness) of binary items and the respondent’s trait level on a single common
scale. Generally, a central assumption of most IRT models (including the Rasch model)
is measurement invariance, i.e., that all items measure the latent trait in the same way
for all subjects. If violated, measurements obtained from such a model provide no fair
comparisons of the subjects. A typical violation of measurement invariance in the Rasch
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model is differential item functioning (DIF), see Ackerman (1992).

Therefore, assessing the assumption of measurement invariance and checking for DIF
is crucial when establishing a Rasch model for measurements of latent traits. Hence,
various approaches have been suggested in the literature that try to assess heterogeneity
in (groups of) subjects either based on observed covariates or unobserved latent classes.
If covariates are available, classical tests like the Wald or likelihood ratio test can be
employed to compare model fits between some reference group and one or more focal
groups (Glas and Verhelst, 1995). Typically, these groups are defined by the researcher
based on categorical covariates or arbitrary splits in either numerical covariates or the
raw scores (Andersen, 1972). More recently, extensions of these classical tests have also
been embedded into a mixed model representation (Van den Noortgate and De Boeck,
2005). Another recently suggested technique is to recursively define and assess groupings
in a data-driven way based on all available covariates (both numerical and categorical)
in so-called Rasch trees (Strobl, Kopf, and Zeileis, 2011a).

Heterogeneity occurring in latent classes only (i.e., not observed or captured by covari-
ates), however, is typically addressed by mixtures of IRT models. Specifically, Rost
(1990) combined a mixture model approach with the Rasch model. If any covariates are
present, they can be used to predict the latent classes (as opposed to the item parameters
themselves) in a second step (Cohen and Bolt, 2005). More recently, extensions to this
mixture model approach have been suggested that encompass this prediction, see Tay,
Newman, and Vermunt (2011) for a unifying framework.

DIF cannot be separated from multidimensionality when items measure several different
latent traits which also differ in (groups of) subjects (cf., e.g., Ackerman, 1992, and the
references therein). In this sense, mixtures of Rasch models can also be used to assess the
assumption of unidimensionality, see Rijmen and De Boeck (2005) on the relationship of
between-item multidimensional models and mixtures of Rasch models.

In this paper, we introduce the psychomix package for the R system for statistical
computing (R Development Core Team, 2011) that provides software for fitting a gen-
eral and flexible class of Rasch mixture models along with comprehensive methods
for model selection, assessment, and visualization. The package leverages the general
and object-oriented infrastructure for fitting mixture models from the flexmix package
(Leisch, 2004; Grün and Leisch, 2008), combining it with the function RaschModel.fit()

from the psychotools package (Zeileis et al., 2011) for the estimation of Rasch mod-
els. All packages are freely available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/.

The reason for using RaschModel.fit() as opposed to other previously existing (and
much more powerful and flexible) R packages for Rasch modeling – such as ltm (Rizopou-
los, 2006) or eRm (Mair and Hatzinger, 2007) – is reduced computational complexity:
RaschModel.fit() is intended to provide a “no frills” implementation of simple Rasch
models, useful when refitting a model multiple times in mixtures or recursive partitions
(see also Strobl et al., 2011a).

14
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While psychomix was under development, another R implementation of the Rost (1990)
model became available in package mRm (Preinerstorfer and Formann, 2011). As this
builds on specialized C++ code, it runs considerably faster than the generic flexmix
approach – however, it only covers this one particular type of model and offers fewer
methods for specifying, inspecting, and assessing (fitted) models. In psychomix, both
approaches are reconciled by optionally employing the mRm solution as an input to the
flexmix routines.

In the following, we first briefly review both Rasch and mixture models and combine them
in a general Rasch mixture framework (Section 2.2). Subsequently, the R implementation
in psychomix is introduced (Section 2.3), illustrated by means of simulated data, and
applied in practice to a study of verbally aggressive behavior (Section 2.4). Concluding
remarks are provided in Section 2.5.

2.2 Rasch mixture models

In the following, we first provide a short introduction to the Rasch model, subsequently
outline the basics of mixture models in general, and finally introduce a general class of
Rasch mixture models along with the corresponding estimation techniques.

2.2.1 The Rasch model

Latent traits can be measured through a set of items to which binary responses are given.
Success of solving an item or agreeing with it is coded as “1”, while “0” codes the opposite
response. The model suggested by Rasch (1960) uses the person’s ability θi (i = 1, . . . , n)
and the item’s difficulty βj (j = 1, . . . ,m) to model the response yij of person i to item
j:

P (Yij = yij|θi, βj) =
exp{yij(θi − βj)}
1 + exp{θi − βj}

. (2.1)

Under the assumption of independence – both across persons and items within persons
(see Molenaar, 1995b) – the likelihood for the whole sample y = (yij)n×m can be written
as the product of the likelihood contributions from Equation 2.1 for all combinations
of subjects and items. It is parametrized by the vector of all person parameters θ =
(θ1, . . . , θn)> and the vector of all item parameters β = (β1, . . . , βm)> (see Equation 2.2).
Since the probability of solving an item is modeled only through the logit of the difference
between person ability and item difficulty, these parameters are on an interval scale with
an arbitrary zero point. To obtain a fixed reference point, usually one item difficulty
(e.g., the first β1) or the sum of item difficulties is restricted to zero. See Fischer (1995)
for details.

On the basis of the number of correctly solved items, the so-called “raw” scores ri =∑m
j=1 yij, the likelihood for the full sample can be factorized into a conditional likelihood

of the item parameters h(·) and the score probabilities g(·) (Equation 2.3). Because the
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scores r are sufficient statistics for the person parameters θ, the likelihood of the item
parameters β conditional on the scores r does not depend on the person parameters θ
(Equation 2.4).

L(θ, β) = f(y|θ, β) (2.2)

= h(y|r, θ, β)g(r|θ, β) (2.3)

= h(y|r, β)g(r|θ, β). (2.4)

The conditional likelihood of the item parameters takes the form

h(y|r, β) =
n∏
i=1

exp{−
∑m

j=1 yijβj}
γri(β)

(2.5)

where γri(·) is the elementary symmetric function of order ri, capturing all possible
response patterns leading to a certain score (see Molenaar, 1995a, for details).

There are several approaches to estimating the Rasch model: Joint maximum likelihood
(ML) estimation of β and θ is inconsistent, thus two other approaches have been es-
tablished. Both are two-step approaches but differ in the way the person parameters θ
are handled. For marginal ML estimation a distribution for θ is assumed and integrated
out in L(θ, β), or equivalently in g(r|θ, β). In the conditional ML approach only the
conditional likelihood of the item parameters h(y|r, β) from Equation 2.5 is maximized
for estimating the item parameters. Technically, this is equivalent to maximizing L(θ, β)
with respect to β if one assumes that g(r|δ) = g(r|θ, β) does not depend on θ or β, but
potentially other parameters δ.

In R, the ltm package (Rizopoulos, 2006) uses the marginal ML approach while the eRm
package (Mair and Hatzinger, 2007) employs the conditional ML approach, i.e., uses and
reports only the conditional part of the likelihood in the estimation of β. The latter
approach is also taken by the RaschModel.fit() function in the psychotools package
(Zeileis et al., 2011).

2.2.2 Mixture models

Mixture models are a generic approach for modeling data that is assumed to stem from
different groups (or clusters) but group membership is unknown.

The likelihood f(·) of such a mixture model is a weighted sum (with prior weights πk)
of the likelihood from several components fk(·) representing the different groups:

f(yi) =
K∑
k=1

πkfk(yi).

Generally, the components fk(·) can be densities or (regression) models. Typically, all
K components fk(·) are assumed to be of the same type f(y|ξk), distinguished through
their component-specific parameter vector ξk.
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If variables are present which do not influence the components fk(·) themselves but rather
the prior class membership probabilities πk, they can be incorporated in the model as
so-called concomitant variables (Dayton and Macready, 1988). In the psychometric liter-
ature, such covariates predicting latent information are also employed, e.g., by Tay et al.
(2011) who advocate a unifying IRT framework that also optionally encompasses con-
comitant information (labeled MM-IRT-C for mixed-measurement IRT with covariates).
To embed such concomitant variables xi into the general mixture model notation, a model
for the component membership probability π(k|xi, α) with parameters α is employed:

f(yi|xi, α, ξ1, . . . , ξK) =
K∑
k=1

π(k|xi, α)f(yi|ξk), (2.6)

where commonly a multinomial logit model is chosen to parametrize π(k|xi, α) (see e.g.,
Grün and Leisch, 2008; Tay et al., 2011). Note that the multinomial model collapses to
separate πk (k = 1, . . . , K) if there is only an intercept and no real concomitants in xi.

2.2.3 Flavors of Rasch mixture models

When combining the general mixture model framework from Equation 2.6 with the
Rasch model based on Equation 2.1, several options are conceivable for two of the build-
ing blocks. First, the component weights can be estimated via a separate parameter πk
for each component or via a concomitant variable model π(k|xi, α) with parameters α.
Second, the full likelihood function f(yi|ξk) of the components needs to be defined. If a
conditional ML approach is adopted, it is clear that the conditional likelihood h(yi|ri, β)
from Equation 2.5 should be one part, but various choices for modeling the score probabil-
ities are available. One option is to model each score probability with its own parameter
g(ri) = ψri , while another (more parsimonious) option would be to adopt a parametric
distribution of the score probabilities with fewer parameters (Rost and von Davier, 1995).

Note that while for a single-component model, the estimates of the item parameters β̂
are invariant to the choice of the score probabilities (as long as it is independent from β),
this is no longer the case for a mixture model with K ≥ 2. The estimation of the item
parameters in the mixture is invariant given the weights π(k|xi, α) but the weights and
thus the estimates of β may depend on the score distribution in a mixture model. (This
dependency is introduced through the posterior probabilities calculated in the E-step
of the algorithm that is explained Section 2.2.4.) Also note that the conditional ML
approach employed here uses a model g(r|δ) directly on the score probabilities rather
than a distribution on the person parameters θ as does the marginal ML approach.

Rost’s original parametrization

One of these possible mixtures – the so-called “mixed Rasch model” introduced by Rost
(1990) – is already well-established in the psychometric literature. It models the score
probabilities through separate parameters g(ri) = ψri (under the restriction that they
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sum to unity) and does not employ concomitant variables. The likelihood of Rost’s
mixture model can thus be written as

f(y|π, ψ, β) =
n∏
i=1

K∑
k=1

πkh(yi|ri, βk)ψri,k. (2.7)

This particular parametrization is implemented in the R package mRm (Preinerstorfer
and Formann, 2011).

Since subjects who solve either none or all items (i.e., ri = 0 or m, respectively) do not
contribute to the conditional likelihood of the item parameters they cannot be allocated
to any of the components in this parametrization. Hence, Rost (1990) proposed to
remove those “extreme scorers” from the analysis entirely and fix the corresponding
score probabilities ψ0 and ψm at 0. However, if one wishes to include these extreme
scorers in the analysis, the corresponding score probabilities can be estimated through
their relative frequency (across all components) and the remaining score probabilities
within each component are rescaled to sum to unity together with those extreme score
probabilities. Nevertheless, the extreme scorers still do not contribute to the estimation
of the mixture itself.

Other score distributions

As noted by Rost and von Davier (1995), the disadvantage of this saturated model for
the raw score probabilities is that many parameters need to be estimated (K × (m− 2),
not counting potential extreme scorers) that are typically not of interest. To check
for DIF, the item parameters are of prime importance while the raw score distribution
can be regarded as a nuisance term. This problem can be alleviated by embedding
the model from Equation 2.7 into a more general framework that also encompasses
more parsimonious parametrizations. More specifically, a conditional logit model can be
established

g(r|δ) =
exp{z>r δ}∑m−1
j=1 exp{z>j δ}

, (2.8)

containing some auxiliary regressors zi with coefficients δ.

The saturated g(ri) = ψri model is a special case when constructing the auxiliary regres-
sor from indicator/dummy variables for the raw scores 2, . . . ,m−1: zi = (I2(ri), . . . , Im−1(ri))

>.
Then δ = (log(ψ2)− log(ψ1), . . . , log(ψm−1)− log(ψ1))

> is a simple logit transformation
of ψ.

As an alternative Rost and von Davier (1995) suggests a specification with only two
parameters that link to mean and variance of the score distribution, respectively. More
specifically, the auxiliary regressor is zi = (ri/m, 4ri(m − ri)/m

2)> so that δ pertains
to the vector of location and dispersion parameters of the score distribution. Thus, for
m > 4 items, this parametrization is more parsimonious than the saturated model.
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General Rasch mixture model

Combining all elements of the likelihood this yields a more general specification of the
Rasch mixture model

f(y|α, β, δ) =
n∏
i=1

K∑
k=1

π(k|xi, α) h(yi|ri, βk) g(ri|δk) (2.9)

with (a) the concomitant model π(k|xi, α) for modeling component membership, (b) the
component-specific conditional likelihood of the item parameters given the scores h(yi|ri, βk),
and (c) the component-specific score distribution g(ri|δk).

2.2.4 Parameter estimation

Parameter estimation for mixture models is usually done via the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977). It treats group membership as un-
known and optimizes the complete-data log-likelihood including the group membership
on basis of the observed values only. It iterates between two steps until convergence:
estimation of group membership (E-step) and estimation of the components (M-step).

In the E-step, the posterior probabilities of each observation for the K components is
estimated through:

p̂ik =
π̂kf(yi|ξ̂k)∑K
g=1 π̂gf(yi|ξ̂g)

(2.10)

using the parameter estimates from the previous iteration for the component weights
π and the model parameters ξ which encompass β and δ. In the case of concomitant
variables, the weights are π̂ik = π(k|xi, α̂).

In the M-step, the parameters of the mixture are re-estimated with the posterior proba-
bilities as weights. Thus, observations deemed unlikely to belong to a certain component
have little influence on estimation within this component. For each component, the
weighted ML estimation can be written as

ξ̂k = argmax
ξk

n∑
i=1

p̂ik log f(yi|ξk) (k = 1, . . . , K) (2.11)

=

{
argmax

βk

n∑
i=1

p̂ik log h(yi|ri, βk); argmax
δk

n∑
i=1

p̂ik log g(ri|δk)

}
which for the Rasch model amounts to separately maximizing the weighted conditional
log-likelihood for the item parameters and the weighted score log-likelihood.

The concomitant model can be estimated separately from the posterior probabilities:

α̂ = argmax
α

n∑
i=1

K∑
k=1

p̂ik log(π(k|xi, α)), (2.12)
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where π(k|xi, α) could be, e.g, a multinomial model.

Finally, note that the number of components K is not a standard model parameter
(because the likelihood regularity conditions do not apply) and thus it is not estimated
through the EM algorithm. Either it needs to be chosen by the practitioner or by model
selection techniques such as information criteria, as illustrated in the following examples.

2.3 Implementation in R

2.3.1 User interface

The function raschmix() can be used to fit the different flavors of Rasch mixture models
described in Section 2.2.3: with or without concomitant variables in π(k|xi, α), and with
different score distributions g(ri|δk) (saturated vs. mean/variance parametrization). The
function’s synopsis is

raschmix(formula, data, k, subset, weights, scores = "saturated",

nrep = 3, cluster = NULL, control = NULL,

verbose = TRUE, drop = TRUE, unique = FALSE, which = NULL,

gradtol = 1e-6, deriv = "sum", hessian = FALSE, ...)

where the lines of arguments pertain to (1) data/model specification processed within
raschmix(), (2) control arguments for fitting a single mixture model, (3) control argu-
ments for iterating across mixtures over a range of numbers of components K, all passed
to stepFlexmix(), and (4) control arguments for fitting each model component within
a mixture (i.e., the M-step) passed to RaschModel.fit(). Details are provided below,
focusing on usage in practice first.

A formula interface with the usual formula, data, subset, and weights arguments is
used: The left-hand side of the formula sets up the response matrix y and the right-
hand side the concomitant variables x (if any). The response may be provided by a
single matrix or a set of individual dummy vectors, both of which may be contained in
an optional data frame. Example usages are raschmix(resp ~ 1, ...) if the matrix
resp is an object in the environment of the formula, typically the calling environment, or
raschmix(item1 + item2 + item3 ~ 1, data = d, ...) if the item* vectors are in
the data frame d. In both cases, ~ 1 signals that there are no concomitant variables – if
there were, they could be specified as raschmix(resp ~ conc1 + conc2, ...). As an
additional convenience, the formula may be omitted entirely if there are no concomitant
variables, i.e., raschmix(data = resp, ...) or alternatively raschmix(resp, ...).

The scores of the model can be set to either "saturated" (see Equation 2.7) or
"meanvar" for the mean/variance specification of Rost and von Davier (1995). Finally,
the number of components K of the mixture is specified through k, which may be a
vector resulting in a mixture model being fitted for each element.
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To control the EM algorithm for fitting the specified mixture models, cluster may op-
tionally specify starting probabilities p̂ik and control can set certain control arguments
through a named list or an object of class “FLXcontrol”. One of these control arguments
named minprior sets the minimum prior probability for every component. If in an itera-
tion of the EM algorithm, any component has a prior probability smaller then minprior,
it is removed from the mixture in the next iteration. The default is 0, i.e., avoiding such
shrinkage of the model. If cluster is not provided, nrep different random initializations
are employed, keeping only the best solution (to avoid local optima). Finally, cluster
can be set to "mrm" in which case the fast C++ implementation from mRm (Preinerstor-
fer and Formann, 2011) can be leveraged to generate optimized starting values. Again,
the best solution of nrep runs of mrm() is used. Note that as of version 1.0 of mRm
only the model from Equation 2.7 is supported in mrm(), resulting in suboptimal – but
potentially still useful – posterior probabilities p̂ik for any other model flavor.

Internally, stepFlexmix() is called to fit all individual mixture models and takes control
arguments verbose, drop, and unique. If k is a vector, the whole set of models is
returned by default but one may choose to select only the best model according to an
information criterion. For example, raschmix(resp, k = 1:3, which = "AIC", ...)

or raschmix(resp ~ 1, data = d, k = 1:4, which = "BIC", ...).

The arguments gradtol, deriv and hessian are used to control the estimation of the
item parameters in each M-step (Equation 2.11) carried out via RaschModel.fit().

Function raschmix() returns objects of class “raschmix” or “stepRaschmix”, respec-
tively, depending on whether a single or multiple mixture models are fitted. These
classes extend “flexmix” and “stepFlexmix”, respectively, for more technical details see
the next section. For standard methods for extracting or displaying information, either
for “raschmix” directly or by inheritance, see Table 2.1 for an overview.

2.3.2 Internal structure

As briefly mentioned above, raschmix() leverages the flexmix package (Leisch, 2004;
Grün and Leisch, 2008) and particularly its stepFlexmix() function for the estimation
of (sets of) mixture models.

The flexmix package is designed specifically to provide the infrastructure for flexible
mixture modeling via the EM algorithm, where the type of a mixture model is deter-
mined through the model employed in the components. In the estimation process, this
component model definition corresponds to the definition of the M-step (Equation 2.11).
Consequently, the flexmix package provides the framework for fitting mixture models by
leveraging the modular structure of the EM algorithm. Provided with the right M-step,
flexmix takes care of the data handling and iterating estimation through both E-step
and M-step.

The M-step needs to be provided in the form of a flexmix driver inheriting from class
“FLXM” (see Grün and Leisch, 2008, for details). The psychomix package includes such
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Function Class Description
summary() “raschmix” display information about the posterior probabili-

ties and item parameters; returns an object of class
“summary.raschmix” containing the relevant sum-
mary statistics (which has a print() method)

parameters() “raschmix” extract estimated parameters of the model for all
or specified components, extract either parameters
α of the concomitant model or item parameters β
and/or score parameters δ

worth() “raschmix” extract the item parameters β under the restriction∑m
j=1 βj = 0

scoreProbs() “raschmix” extract the score probabilities g(r|δ)
plot() “raschmix” base graph of item parameter profiles in all or spec-

ified components
xyplot() “raschmix” lattice graph of item parameter profiles of all or

specified components in a single or multiple panels
histogram() “raschmix” lattice rootogram or histogram of posterior proba-

bilities
print() “stepFlexmix” simple printed display of number of components,

log-likelihoods, and information criteria
plot() “stepFlexmix” plot information criteria against number of com-

ponents
getModel() “stepFlexmix” select model according to either an information cri-

terion or the number of components
print() “flexmix” simple printed display with cluster sizes and con-

vergence
clusters() “flexmix” extract predicted class memberships
posterior() “flexmix” extract posterior class probabilities
logLik() “flexmix” extract fitted log-likelihood
AIC(); BIC() “flexmix” compute information criteria AIC, BIC

Table 2.1: Methods for objects of classes “raschmix”, “flexmix”, and “stepFlexmix”.

a driver function: FLXMCrasch() relies on the function RaschModel.fit() from the
psychotools package for estimation of the item parameters (i.e., maximization of the
conditional likelihood from Equation 2.5) and adds different estimates of raw score prob-
abilities depending on their parametrization. The driver can also be used directly with
functions flexmix() and stepFlexmix(). The differences in model syntax and func-
tionality for the classes of the resulting objects are illustrated in the Appendix A. As
noted in the introduction, the reason for employing RaschModel.fit() rather than one
of the more established Rasch model packages such as eRm or ltm is speed.

In the flexmix package, two fitting functions are provided. flexmix() is designed for
fitting one model once and returns an object of class “flexmix”. stepFlexmix() extends
this so that either a single model or several models can be fitted. It also provides the
functionality to fit each model repeatedly to avoid local optima.
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When fitting models repeatedly, only the solution with the highest likelihood is returned.
Thus, if stepFlexmix() is used to repeatedly fit a single model, it returns an object of
class “flexmix”. If stepFlexmix() is used to fit several different models (repeatedly or
just once), it returns an object of class “stepFlexmix”.

This principle extends to raschmix(): If it is used to fit a single model, the returned
object is of class “raschmix”. If used for fitting multiple models, raschmix() returns an
object of class “stepRaschmix”. Both classes extend their flexmix counterparts.

2.3.3 Illustrations

For illustrating the flexible usage of raschmix(), we employ an artificial data set drawn
from one of the three data generating processes (DGPs) suggested by Rost (1990) for
the introduction of Rasch mixture models. All three DGPs are provided in the function
simRaschmix() setting the design to "rost1", "rost2", or "rost3", respectively. The
DGPs contain mixtures of K = 1, and 2, and 3 components, respectively, all with m = 10
items.

The DGP "rost1" is intended to illustrate the model’s capacity to correctly deter-
mine when no DIF is present. Thus, it includes only one latent class with item pa-
rameters β(1) = (2.7, 2.1, 1.5, 0.9, 0.3,−0.3,−0.9,−1.5,−2.1,−2.7)>. (Rost originally
used opposite signs to reflect item easiness parameters but since difficulty parame-
ters are estimated by raschmix() the signs have been reversed.) The DGP "rost2"

draws observations from two latent classes of equal sizes with item parameters of op-
posite signs: β(1) and β(2) = −β(1), respectively (see Figure 2.2 for an example). Fi-
nally, for the DGP "rost3" a third component is added with item parameters β(3) =
(−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5)>. The prior probabilities for the la-
tent classes with item parameters β(1), β(2), and β(3) are 4/9, 2/9, and 3/9 respectively.
In all three DGPs, the person parameters θ are drawn from a discrete uniform distri-
bution on {2.7, 0.9,−0.9,−2.7}, except for the third class of DGP "rost3" which uses
only one level of ability, drawn from the before-mentioned set of four ability levels. In
all DGPs, response vectors for 1800 subjects are initially drawn but the extreme scorers
who solved either none or all items are excluded.

Here, a dataset from the second DGP is generated along with two artificial covariates
x1 and x2. Covariate x1 is an informative binary variable (i.e., correlated with the true
group membership) while x2 is an uninformative continuous variable.

R> set.seed(1)

R> r2 <- simRaschmix(design = "rost2")

R> d <- data.frame(

+ x1 = rbinom(nrow(r2), prob = c(0.4, 0.6)[attr(r2, "cluster")], size = 1),

+ x2 = rnorm(nrow(r2))

+ )

R> d$resp <- r2
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Figure 2.1: Information criteria for Rost’s model with K = 1, 2, 3 components for the
artificial scenario 2 data.

The Rost (1990) version of the Rasch mixture model – i.e., with a saturated score model
and without concomitant variables – is fitted for one to three components. As no con-
comitants are employed in this model flavor, the matrix r2 can be passed to raschmix()

without formula:

R> set.seed(2)

R> m1 <- raschmix(r2, k = 1:3)

R> m1

Call:

raschmix(formula = r2, k = 1:3)

iter converged k k0 logLik AIC BIC ICL

1 2 TRUE 1 1 -10484.227 21002.45 21094.39 21094.39

2 9 TRUE 2 2 -8829.038 17728.08 17917.35 17987.30

3 67 TRUE 3 3 -8817.848 17741.70 18028.32 18307.13

To inspect the results, the returned object can either be printed, as illustrated above,
or plotted yielding a visualization of information criteria (see Figure 2.1). Both printed
display and visualization show a big difference in information criteria across number
of components K, with the minimum always being assumed for K = 2, thus correctly
recovering the two latent classes constructed in the underlying DGP.

The values of the information criteria can also be accessed directly via the functions of
the corresponding names. To select a certain model from a “stepRaschmix” object, the
getModel() function from the flexmix package can be employed. The specification of
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which model is to be selected can either be an information criterion, or the number of
components as a string, or the index of the model in the original vector k. In this par-
ticular case, which = "BIC", which = "2", and which = 2 would all return the model
with K = 2 components.

R> BIC(m1)

1 2 3

21094.39 17917.35 18028.32

R> m1b <- getModel(m1, which = "BIC")

R> summary(m1b)

Call:

raschmix(formula = r2, k = 2)

prior size post>0 ratio

Comp.1 0.5 819 1285 0.637

Comp.2 0.5 830 1301 0.638

Item Parameters:

Comp.1 Comp.2

Item01 -2.5461200 2.6278031

Item02 -2.1053835 2.1250746

Item03 -1.6716294 1.3812228

Item04 -1.0293901 0.8535203

Item05 -0.2233486 0.3129260

Item06 0.2737782 -0.2937386

Item07 0.9561390 -0.8701059

Item08 1.5512468 -1.4464421

Item09 2.0670820 -2.0540182

Item10 2.7276257 -2.6362421

'log Lik.' -8829.038 (df=35)

AIC: 17728.08 BIC: 17917.35

To inspect the main properties of the model, summary() can be called. The information
about the components of the mixture includes a priori component weights πk and sizes
as well as the estimated item parameters β̂ per component. Additionally, the fitted log-
likelihood and the information criteria AIC and BIC are reported. As one of the item
parameters in the Rasch model is not identified, a restriction needs to be applied to the
item parameters. In the output of the summary() function, the item parameters of each
component are scaled to sum to zero.
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Two other functions, worth() and parameters(), can be used to access the item pa-
rameters. The sum restriction employed in the summary() output is also applied by
worth(). Additionally, worth() provides the possibilities to select several or just one
specific component and to transform item difficulty parameters to item easiness pa-
rameters. The function parameters() also offers these two options but restricts the first
item parameter to be zero (rather than to restrict the sum of item parameters), as this
restriction is used in the internal computations. Thus, for the illustrative dataset with
10 items, parameters() returns 9 item parameters, leaving out the first item parameter
restricted to zero while worth() returns 10 item parameters summing to zero. The latter
corresponds to the parametrization employed by Rost (1990) and simRaschmix(). For
convenience reasons, the true parameters are attached to the simulated dataset as an
attribute named "difficulty". These are printed below and visualized in Figure 2.2
(left), showing that all item parameters are recovered rather well. Note that the ordering
of the components in mixture models is generally arbitrary.

R> parameters(m1b, "item")

Comp.1 Comp.2

item.Item01 NA NA

item.Item02 0.4407365 -0.5027285

item.Item03 0.8744906 -1.2465803

item.Item04 1.5167298 -1.7742828

item.Item05 2.3227714 -2.3148771

item.Item06 2.8198982 -2.9215417

item.Item07 3.5022589 -3.4979090

item.Item08 4.0973667 -4.0742453

item.Item09 4.6132020 -4.6818213

item.Item10 5.2737457 -5.2640452

R> worth(m1b)

Comp.1 Comp.2

Item01 -2.5461200 2.6278031

Item02 -2.1053835 2.1250746

Item03 -1.6716294 1.3812228

Item04 -1.0293901 0.8535203

Item05 -0.2233486 0.3129260

Item06 0.2737782 -0.2937386

Item07 0.9561390 -0.8701059

Item08 1.5512468 -1.4464421

Item09 2.0670820 -2.0540182

Item10 2.7276257 -2.6362421

R> attr(r2, "difficulty")
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[,1] [,2]

[1,] 2.7 -2.7

[2,] 2.1 -2.1

[3,] 1.5 -1.5

[4,] 0.9 -0.9

[5,] 0.3 -0.3

[6,] -0.3 0.3

[7,] -0.9 0.9

[8,] -1.5 1.5

[9,] -2.1 2.1

[10,] -2.7 2.7

In addition to the item parameters, the parameters() function can also return the
parameters of the "score" model and the "concomitant" model (if any). The type of
parameters can be set via the which argument. Per default parameters() returns both
item and score parameters.

A comparison between estimated and true class membership can be conducted using
the clusters() function and the corresponding attribute of the data, respectively. As
already noticeable from the item parameters, the first component of the mixture matches
the second true group of the data and vice versa. This label-switching property of mixture
models in general can also be seen in the cross-table of class memberships. We thus have
32 misclassifications among the 1649 observations.

R> table(model = clusters(m1b), true = attr(r2, "cluster"))

true

model 1 2

1 14 805

2 812 18

For comparison, a Rasch mixture model with mean/variance parametrization for the
score probabilities, as introduced in Section 2.2.3, is fitted with one to three components
and the best BIC model is selected.

R> set.seed(3)

R> m2 <- raschmix(data = r2, k = 1:3, scores = "meanvar")

R> m2

Call:

raschmix(data = r2, k = 1:3, scores = "meanvar")
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Figure 2.2: True (black) and estimated (blue/red) item parameters for the two model
specifications, "saturated" (left) and "meanvar" (right), for the artificial scenario 2
data.

iter converged k k0 logLik AIC BIC ICL

1 2 TRUE 1 1 -10486.816 20995.63 21055.12 21055.12

2 8 TRUE 2 2 -8834.887 17715.77 17840.16 17910.21

3 121 TRUE 3 3 -8827.652 17725.30 17914.58 18352.78

R> m2b <- getModel(m2, which = "BIC")

As in the saturated version of the Rasch mixture model, all three information criteria
prefer the two-component model. Thus, this version of a Rasch mixture model is also
capable of recognizing the two latent classes in the data while using a more parsimonious
parametrization with 23 instead of 35 parameters.

R> logLik(m2b)

'log Lik.' -8834.887 (df=23)

R> logLik(m1b)

'log Lik.' -8829.038 (df=35)

The estimated parameters of the distribution of the score probabilities can be accessed
through parameters() while the full set of score probabilities is returned by scoreProbs().
The estimated score probabilities of the illustrative model are approximately equal across
components and roughly uniform.
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R> parameters(m2b, which = "score")

Comp.1 Comp.2

score.location 0.1662452 0.1001153

score.dispersion -0.1679713 -0.2514496

R> scoreProbs(m2b)

Comp.1 Comp.2

[1,] 0.0000000 0.0000000

[2,] 0.1104995 0.1170100

[3,] 0.1071901 0.1101524

[4,] 0.1053864 0.1058038

[5,] 0.1050149 0.1036919

[6,] 0.1060603 0.1036871

[7,] 0.1085652 0.1057891

[8,] 0.1126327 0.1101268

[9,] 0.1184334 0.1169719

[10,] 0.1262176 0.1267671

[11,] 0.0000000 0.0000000

The resulting item parameters for this particular data set are virtually identical to those
from the saturated version, as can be seen in Figure 2.2.

To demonstrate the use of a concomitant variable model for the weights of the mixture,
the two artificial variables x1 and x2 are employed. They are added on the right-hand
side of the formula, yielding a multinomial logit model for the weights (only if k = 2 or
more components are specified).

R> set.seed(4)

R> cm2 <- raschmix(resp ~ x1 + x2, data = d, k = 1:3, scores = "meanvar")

The BIC is used to compare the models with and without concomitant variables and
different number of components. The two true groups are recognized correctly with and
without concomitant variables, while the model with concomitants manages to employ
the additional information and reaches a somewhat improved model fit.

R> rbind(m2 = BIC(m2), cm2 = BIC(cm2))

1 2 3

m2 21055.12 17840.16 17914.58

cm2 21055.12 17776.30 17867.25
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While the likelihood ratio (LR) test cannot be employed to choose the number of com-
ponents in a mixture model, it can be used to assess the concomitant variable model for
a mixture model with a fixed number of components. Testing the 3-component model
with concomitant variables against the 3-component model without concomitant vari-
ables yields a test statistic of 78.67 (p < 0.001).

As mentioned above, the parameters of the concomitant model can be accessed via the
parameters() function, setting which = "concomitant". The influence of the infor-
mative covariate x1 is reflected in the large absolute coefficient while the estimated
coefficient for the noninformative covariate x2 is close to zero.

R> cm2b <- getModel(cm2, which = "BIC")

R> parameters(cm2b, which = "concomitant")

1 2

(Intercept) 0 0.45759154

x1 0 -0.91231698

x2 0 0.02909326

The corresponding estimated item parameters parameters(cm2b, "item") are not very
different from the previous models (and are hence not shown here). This illustrative
application shows that the inclusion of concomitant variables can provide additional
information, e.g., that x1 but not x2 is associated with the class membership. Note also
that this is picked up although a rather weak association was simulated here.

R> table(x1 = d$x1, clusters = clusters(cm2b))

clusters

x1 1 2

0 318 501

1 505 325

2.4 Empirical application: Verbal aggression

The verbal aggression dataset (De Boeck and Wilson, 2004) contains item response data
from 316 first-year psychology students along with gender and trait anger (assessed by
the Dutch adaptation of the state-trait anger scale) as covariates (Smits, De Boeck, and
Vansteelandt, 2004). The 243 women and 73 men responded to 24 items constructed the
following way: Following the description of a frustrating situation, subjects are asked to
agree or disagree with a possible reaction. The situations are described by the following
four sentences:
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� S1: A bus fails to stop for me.

� S2: I miss a train because a clerk gave me faulty information.

� S3: The grocery store closes just as I am about to enter.

� S4: The operator disconnects me when I had used up my last 10 cents for a call.

Each reaction begins with either “I want to” or “I do” and is followed by one of the three
verbally aggressive reactions “curse”, “scold”, or “shout”, e.g., “I want to curse”, “I do
curse”, “I want to scold”, or “I do scold”.

For our illustration, we use only the first two sentences which describe situations in
which the others are to blame. Extreme-scoring subjects agreeing with either none or
all responses are removed.

R> data("VerbalAggression", package = "psychotools")

R> VerbalAggression$resp2 <- VerbalAggression$resp2[, 1:12]

R> va12 <- subset(VerbalAggression,

+ rowSums(resp2) > 0 & rowSums(resp2) < 12)

R> colnames(va12$resp2)

[1] "S1WantCurse" "S1DoCurse" "S1WantScold" "S1DoScold"

[5] "S1WantShout" "S1DoShout" "S2WantCurse" "S2DoCurse"

[9] "S2WantScold" "S2DoScold" "S2WantShout" "S2DoShout"

We fit Rasch mixture models with the mean/variance score model, one to four com-
ponents, and with and without the two concomitant variables, respectively (the single
component model being only fitted without covariates).

R> set.seed(1)

R> va12_mix1 <- raschmix(resp2 ~ 1, data = va12, k = 1:4, scores = "meanvar")

R> set.seed(2)

R> va12_mix2 <- raschmix(resp2 ~ gender + anger, data = va12, k = 1:4,

+ scores = "meanvar")

The corresponding BIC for all considered models can be computed by

R> rbind(BIC(va12_mix1), BIC(va12_mix2))

1 2 3 4

[1,] 3874.632 3857.549 3854.353 3889.432

[2,] 3874.632 3859.120 3854.823 3881.705
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Rootogram of posterior probabilities > 1e−04
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Figure 2.3: Rootogram of posterior probabilities in the 3-component Rasch mixture
model on verbal aggression data.

R> va12_mix3 <- getModel(va12_mix2, which = "3")

showing that three components are preferred regardless of whether or not concomitant
variables are used. The difference in BIC between the models with and without concomi-
tant variables is very small and the LR test yields a test statistic of 21.97 (p < 0.001),
thus the 3-component model with concomitant variables is chosen.

The posterior probabilities for the three components can be visualized via
histogram(va12_mix3) – by default using a square-root scale, yielding a so-called rootogram
– as shown in Figure 2.3. In the ideal case, posterior probabilities of the observations
for each component are either high or low, yielding a U-shape in all panels. In this case
here, the components are separated acceptably well.

The item profiles in the three components can be visualized via plot(va12_mix3) or
xyplot(va12_mix3) with the output of the latter being shown in Figure 2.4. The first
six items are responses to the first sentence (bus), the remaining six refer to the second
sentence (train). The six reactions are grouped in “want”/“do” pairs: first for “curse”,
then “scold”, and finally “shout”.

The second component displays a zigzag pattern which indicates that subjects in this
component always find it easier or less extreme to “want to” react a certain way rather
than to actually “do” react that way. In the other two components this want/do relation-
ship is reversed, except for the shouting response (to either situation) and the scolding
response to the train situation (S2) in the first component.

In the third component, there are no big differences in the estimated item parameters.
Neither any situation (S1 or S2) nor any type of verbal response (curse, scold, or shout)
is perceived as particularly extreme by subjects in this component. In components 1
and 2, the situation is also not very relevant but subjects differentiate between the three
verbal responses. This is best visible in component 1 where item difficulty is clearly
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Figure 2.4: Item profiles for the 3-component Rasch mixture model on verbal aggression
data. Items 1–6 pertain to situation S1 (bus), items 7–12 to situation S2 (train), each
in the following order: want to curse, do curse, want to scold, do scold, want to shout,
do shout.

increasing from response “curse” to response “shout”. Thus, shouting is perceived as
the most extreme verbal response while cursing is considered a comparably moderate
response. In component 2 this pattern is also visible albeit not as prominently as in
component 1.

The link between the covariates and the latent classes is described through the concomi-
tant variable model:

R> parameters(getModel(va12_mix2, which = "3"), which = "concomitant")

1 2 3

(Intercept) 0 -2.9113698 0.76066767

gendermale 0 -0.2473712 -1.66472846

anger 0 0.1152369 -0.01154008

The absolute sizes of the coefficients reflect that there may be some association with
gender but less with the anger score. However, as there is a slight increase in BIC
compared to the model without concomitants, the association with the covariates appears
to be relatively weak. In comparison to other approaches exploring the association of
class membership with covariates ex post (e.g., as in Cohen and Bolt, 2005), the main
advantage of the concomitant variables model lies in the simultaneous estimation of the
mixture and the influence of covariates.
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2.5 Summary

Mixtures of Rasch models are a flexible means of checking measurement invariance and
testing for differential item functioning. Here, we establish a rather general unifying
conceptual framework for Rasch mixture models along with the corresponding computa-
tional tools in the R package psychomix. In particular, this includes the original model
specification of Rost (1990) as well as more parsimonious parametrizations (Rost and von
Davier, 1995), along with the possibility to incorporate concomitant variables predicting
the latent classes (as in Tay et al., 2011).

The R implementation is based on the infrastructure provided by the flexmix package,
allowing for convenient model specification and selection. The rich set of methods for
flexmix objects is complemented by additional functions specifically designed for Rasch
models, e.g., extracting different types of parameters in different transformations and
visualizing the estimated component-specific item parameters in various ways. Option-
ally, speed gains can be obtained from utilizing the C++ implementation in the mRm
package for selecting optimal starting values. Thus, psychomix provides a comprehen-
sive and convenient toolbox for the application of Rasch mixture models in psychometric
research practice.
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Chapter 3

Rasch Mixture Models for DIF
Detection:
A Comparison of Old and New
Score Specifications

This chapter is a (slightly) modified version of Frick et al. (2014a), published in Edu-
cational and Psychological Measurement.

Abstract:
Rasch mixture models can be a useful tool when checking the assumption of measure-
ment invariance for a single Rasch model. They provide advantages compared to manifest
DIF tests when the DIF groups are only weakly correlated with the manifest covariates
available. Unlike in single Rasch models, estimation of Rasch mixture models is sensi-
tive to the specification of the ability distribution even when the conditional maximum
likelihood approach is used. It is demonstrated in a simulation study how differences in
ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF
detection, it is not of interest to uncover such ability differences as one is only interested
in a latent group structure regarding the item difficulties. To avoid any confounding
effect of ability differences (or impact), a new score distribution for the Rasch mixture
model is introduced here. It ensures the estimation of the Rasch mixture model to be
independent of the ability distribution and thus restricts the mixture to be sensitive to la-
tent structure in the item difficulties only. Its usefulness is demonstrated in a simulation
study and its application is illustrated in a study of verbal aggression.

3.1 Introduction

Based on the Rasch model (Rasch, 1960), Rost (1990) introduced what he called the
“mixed Rasch model”, a combination of a latent class approach and a latent trait approach
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to model qualitative and quantitative ability differences. As suggested by Rost (1990),
it can also be used to examine the fit of the Rasch model and check for violations of
measurement invariance such as differential item functioning (DIF). Since the model
assumes latent classes for which separate Rasch models hold, it can be employed to
validate a psychological test or questionnaire: if a model with two or more latent classes
fits better than a model with one latent class, measurement invariance is violated and a
single Rasch model is not suitable because several latent classes are present in the data
which require separate Rasch models with separate sets of item difficulties. These classes
are latent in the sense that they are not determined by covariates.

As the model assesses a questionnaire – or instrument as it will be referred to in the
following – as a whole, it works similar to a global test like the likelihood ratio (LR) test
(Andersen, 1972; Gustafsson, 1980), not an item-wise test like the Mantel-Haenszel test
(Holland and Thayer, 1988). Hence, it is the set of item parameters for all items, which
is tested for differences between groups rather than each item parameter being tested
separately.

The mixed Rasch model – here called Rasch mixture model to avoid confusion with
mixed (effects) models and instead highlight its relation to mixture models – has since
been extended by Rost and von Davier (1995) to different score distributions and by
Rost (1991) and von Davier and Rost (1995) to polytomous responses. The so-called
“mixed ordinal Rasch model” is a mixture of partial credit models (PCM, Masters, 1982)
and includes a mixture of rating scale models (RSM, Andrich, 1978) as a special case.

The original dichotomous model as well as its polytomous version have been applied in
a variety of fields. Zickar, Gibby, and Robie (2004) use a mixture PCM to detect faking
in personality questionnaires, while Hong and Min (2007) identify three types/classes of
depressed behavior by applying a mixture RSM to a self-rating depression scale. Another
vast field of application are tests in educational measurement. Baghaei and Carstensen
(2013) identify different reader types from a reading comprehension test using a Rasch
mixture model. Maij-de Meij, Kelderman, and van der Flier (2010) also apply a Rasch
mixture model to identify latent groups in a vocabulary test. Cohen and Bolt (2005) use
a Rasch mixture model to detect DIF in a mathematics placement test.

Rasch mixture models constitute a legitimate alternative to DIF tests for manifest vari-
ables such as the LR test or the recently proposed Rasch trees (Strobl et al., 2014).
These methods are usually used to test DIF based on observed covariates, whereas Maij-
de Meij et al. (2010) show that mixture models are more suitable to detect DIF if the
“true source of bias” is a latent grouping variable. The simulation study by Preinerstorfer
and Formann (2011) suggests that parameter recovery works reasonably well for Rasch
mixture models. While they did not study in detail the influence of DIF effect size or the
effect of different ability distributions, they deem such differences relevant for practical
concern but leave it to further research to establish just how strongly they influence
estimation accuracy.

As the Rasch model is based on two aspects, subject ability and item difficulty, Rasch
mixture models are sensitive not only to differences in the item difficulties – as in DIF
– but also to differences in abilities. Such differences in abilities are usually called
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impact and do not infringe on measurement invariance (Ackerman, 1992). In practice,
when developing a psychological test, one often follows two main steps. First, the item
parameters are estimated, e.g., by means of the conditional maximum likelihood (CML)
approach, checked for model violations and problematic items are possibly excluded
or modified. Second, the final set of items is used to estimate person abilities. The
main advantage of the CML approach is that, for a single Rasch model, the estimation
and check of item difficulties are (conditionally) independent of the abilities and their
distribution. Other global assessment methods like the LR test and the Rasch trees are
also based on the CML approach to achieve such independence. However, in a Rasch
mixture model, the estimation of the item difficulties is not independent of the ability
distribution, even when employing the CML approach. DeMars and Lau (2011) find that
a difference in mean ability between DIF groups affects the estimation of the DIF effect
sizes. Similarly, other DIF detection methods are also affected by impact, e.g., inflated
type I error rates occur in the Mantel-Haenszel and logistic regression procedures if
impact is present (Li, Brooks, and Johanson, 2012; DeMars, 2010).

When using a Rasch mixture model for DIF detection, an influence of impact alone on
the mixture is undesirable as the goal is to uncover DIF groups based on item difficulties,
not impact groups based on abilities. To avoid such confounding effects of impact, we
propose a new version of the Rasch mixture model specifically designed to detect DIF,
which allows for the transfer of the crucial property of CML from a single Rasch model
to the mixture: estimation and testing of item difficulties is independent of the abilities
and their distribution.

A simulation study is conducted to illustrate how previously suggested versions and this
new version of the Rasch mixture model react to impact, either alone or in combination
with DIF, and how this affects the suitability of the Rasch mixture model as a DIF
detection method.

In the following, we briefly discuss the Rasch model and Rasch mixture models to explain
why the latter are sensitive to the specification of the score distribution despite employing
a conditional maximum likelihood approach for estimation. This Section 3.2 is concluded
with our suggested new score distribution. We illustrate and discuss the behavior of
Rasch mixture models with different options for the score distribution in a Monte Carlo
study in Section 3.3. The suggested approach for DIF detection via Rasch mixture
models is illustrated through an empirical application to a study on verbally aggressive
behavior in Section 3.4. Concluding remarks are provided in Section 3.5.

3.2 Theory

3.2.1 The Rasch model

The Rasch model, introduced by Georg Rasch (1960), models the probability for a binary
response yij ∈ {0, 1} by subject i to item j as dependent on the subject’s ability θi and
the item’s difficulty βj. Assuming independence between items given the subject, the
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probability for observing a vector yi = (yi1, . . . , yim)> with responses to all m items by
subject i can be written as

P (Yi = yi|θi, β) =
m∏
j=1

exp{yij(θi − βj)}
1 + exp{θi − βj}

, (3.1)

depending on the subject’s ability θi and the vector of all item difficulties β = (β1, . . . , βm)>.
Capital letters denote random variables and lower case letters denote their realizations.

Since joint maximum likelihood (JML) estimation of all abilities and difficulties is not
consistent for a fixed number of items m (Molenaar, 1995a), conditional maximum like-
lihood (CML) estimation is employed here. This exploits that the number of correctly
scored items, the so-called raw score Ri =

∑m
j=1 Yij, is a sufficient statistic for the ability

θi (Molenaar, 1995a). Therefore, the answer probability from Equation 3.1 can be split
into two factors where the first factor is conditionally independent of θi:

P (Yi = yi|θi, β) = P (Yi = yi|ri, θi, β) P (Ri = ri|θi, β)

= P (Yi = yi|ri, β)︸ ︷︷ ︸
h(yi|ri,β)

P (Ri = ri|θi, β)︸ ︷︷ ︸
g(ri|θi,β)

.

Due to this separation, consistent estimates of the item parameters β can be obtained
by maximizing only the conditional part of the likelihood h(·):

h(yi|ri, β) =
exp{−

∑m
j=1 yijβj}

γri(β)
, (3.2)

with γj(·) denoting the elementary symmetric function of order j. The resulting CML es-

timates β̂ are consistent, asymptotically normal, and asymptotically efficient (Molenaar,
1995a).

If not only the conditional likelihood but the full likelihood is of interest – as in Rasch
mixture models – then the score distribution g(·) needs to be specified as well. The
approach used by Rost (1990) and Rost and von Davier (1995) is to employ some distri-
bution for the raw scores ri based on a set of auxiliary parameters δ. Then the probability
density function for yi can be written as:

f(yi|β, δ) = h(yi|ri, β) g(ri|δ). (3.3)

Based on this density, the following subsections first introduce mixture Rasch models in
general and then discuss several choices for g(·). CML estimation is used throughout for
estimating the Rasch model, i.e., the conditional likelihood h(·) is always specified by
Equation 3.2.

3.2.2 Rasch mixture models

Mixture models are essentially a weighted sum over several components, i.e., here over
several Rasch models. Using the Rasch model density function from Equation 3.3, the
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likelihood L(·) of a Rasch mixture model with K components for data from n respondents
is given by

L(π(1), . . . , π(K), β(1), . . . , β(K), δ(1), . . . , δ(K)) =
n∏
i=1

K∑
k=1

π(k)f(yi|β(k), δ(k))

=
n∏
i=1

K∑
k=1

π(k)h(yi|ri, β(k)) g(ri|δ(k)).(3.4)

where the (k)-superscript denotes the component-specific parameters: the component
weight π(k), the component-specific item parameters β(k), and the component-specific
score parameters δ(k) for k = 1, . . . , K.

This kind of likelihood can be maximized via the expectation-maximization (EM) al-
gorithm (Dempster et al., 1977) which alternates between maximizing the component-
specific likelihoods for obtaining parameter estimates and computing expectations for
each observations belonging to each cluster.

More formally, given (initial) estimates for the model parameters π̂(k), β̂(k), δ̂(k) for all
components k = 1, . . . , K, posterior probabilities of each observation i belonging to a
component, or latent class, k are calculated in the E-step. This is simply i’s relative
contribution to component k compared to the sum of all its contributions:

p̂ik =
π̂(k) f(yi|β̂(k), δ̂(k))∑K
`=1 π̂

(`) f(yi|β̂(`), δ̂(`))
=

π̂(k) h(yi|ri, β̂(k)) g(ri|δ̂(k))∑K
`=1 π̂

(`) h(yi|ri, β̂(`)) g(ri|δ̂(`))
. (3.5)

In the M-step of the algorithm, these posterior probabilities are used as the weights in
a weighted ML estimation of the model parameters. This way, an observation deemed
unlikely to belong to a certain latent class does not contribute strongly to its estimation.
Estimation can be done separately for each latent class. Using CML estimation for the
Rasch Model, the estimation of item and score parameters can again be done separately.
For all components k = 1, . . . , K:

(β̂(k), δ̂(k)) = argmax
β(k),δ(k)

n∑
i=1

p̂ik log f(yi|β(k), δ(k))

=

{
argmax

β(k)

n∑
i=1

p̂ik log h(yi|ri, β(k)); argmax
δ(k)

n∑
i=1

p̂ik log g(ri|δ(k))

}
.(3.6)

Estimates of the class probabilities can be obtained from the posterior probabilities by
averaging:

π̂(k) =
1

n

n∑
i=1

p̂ik. (3.7)

The E-step (Equation 3.5) and M-step (Equations 3.6 and 3.7) are iterated until con-
vergence, always updating either the weights based on current estimates for the model
parameters or vice versa.

Note that the above implicitly assumes that the number of latent classes K is given or
known. However, this is typically not the case in practice and K needs to be chosen based
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on the data. As K is not a model parameter – regularity conditions for the likelihood
ratio test are not fulfilled (McLachlan and Peel, 2000, Chapter 6.4) – it is often chosen
via some information criterion that balances goodness of fit (via the likelihood) with a
penalty for the number of model parameters. Since the various information criteria differ
in their penalty term, the decision which model is considered “best” may depend on the
information criterion chosen. In the following, the BIC (Bayesian information criterion,
Schwarz, 1978) is used, which Li, Cohen, Kim, and Cho (2009) found to be a suitable
model selection method for dichotomous mixture item response theory models. Note
that this is not a formal significance test because one does not control a type I error rate.

3.2.3 Score distribution

In a single Rasch model, the estimation of the item parameters is invariant to the score
distribution because of the separation in Equation 3.3. In the mixture context, this in-
variance property holds only given the weights in Equation 3.6. However, these posterior
weights depend on the full Rasch likelihood, including the score distribution (Equa-
tion 3.5). Therefore, the estimation of the item parameters in a Rasch mixture model
is not independent of the score distribution for K > 1, even if the CML approach is
employed. Hence, it is important to consider the specification of the score distribu-
tion when estimating Rasch mixture models and to assess the consequences of potential
misspecifications.

Saturated and mean-variance specification

In his introduction of the Rasch mixture model, Rost (1990) suggests a discrete proba-
bility distribution on the scores with a separate parameter for each possible score. This
requires m− 2 parameters per latent class as the probabilities need to sum to 1 (and the
extreme scores, r = 0 and r = m, do not contribute to the likelihood).

Realizing that this saturated specification requires a potentially rather large number
of parameters, Rost and von Davier (1995) suggest a parametric distribution with one
parameter each for mean and variance.

Details on both specifications can be found in Rost (1990) and Rost and von Davier
(1995), respectively. Here, the notation of Frick et al. (2012) is adopted, which expresses
both specifications in a unified way through a conditional logit model for the score
r = 1, . . . ,m− 1:

g(r|δ(k)) =
exp{z>r δ(k)}∑m−1
j=1 exp{z>j δ(k)}

,

with different choices for zr leading to the saturated and mean-variance specification,
respectively. For the former, the regressor vector is (m− 2)-dimensional with

zr = (0, . . . , 0, 1, 0, . . . , 0)>
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and the 1 at position r − 1. Consequently, if r = 1, zr is a vector of zeros. For the
mean-variance specification, the regressor vector is 2-dimensional and given by

zr =

(
r

m
,
4r(m− r)

m2

)>
.

Restricted specification

In the following we suggest a new specification of the score distribution in the Rasch
mixture model, which aims at obtaining independence of the item parameter estimates
from the specification of the score distribution and therefore enabling the Rasch mixture
model to distinguish between DIF and impact. Other global DIF detection methods
like the LR test and Rasch trees are able to make this distinction (Ankenmann, Witt,
and Dunbar, 1999; Strobl et al., 2014) because they are based only on the conditional
part of the likelihood (Equation 3.2). Analogously, we suggest a mixture of only this
conditional part rather than the full likelihood (Equation 3.3) of the Rasch model so
that the mixture model will only be influenced by differences in the item parameters.

Mixing only the conditional likelihood h(·) means that the sum over the K latent classes
in the likelihood of the Rasch mixture model in Equation 3.4 only applies to h(·) but
not to the score distribution g(·). The mixture is then only based on latent structure
in the item difficulties, not on latent structure in both difficulties and scores. More-
over, such a Rasch mixture model based only on the conditional likelihood without any
score distribution is equivalent to a Rasch mixture model where the score distribution is
independent of the latent class k = 1, . . . , K:

g(r|δ(k)) = g(r|δ) (k = 1, . . . , K),

because then the factor g(r|δ) is a constant that can be moved out of the sum over
the components k in Equation 3.4. Consequently, compared to the case without any
score distribution, the log-likelihood just changes by an additional constant without
component-specific parameters. In either case, the estimation of the component-specific
parameters item parameters as well as the selection of the number of components K is
independent of the specification of the score distribution.

This equivalence and independence from the score distribution can also be seen easily
from the definition of the posterior weights (Equation 3.5): If restricted, g(·) can be
moved out of the sum and then cancels out, preserving only the dependence on h(·).
Thus, the p̂ik depend only on π̂(k) and β̂(k) but not δ̂(k). Therefore, the component weights
and component-specific item parameters can be estimated without any specification of
the score distribution.

Subsequently, we adopt the restricted perspective rather than omitting g(·) completely,
when we want to obtain a mixture model where the mixture is independent of the score
distribution. From a statistical point of view this facilitates comparisons of the restricted
Rasch mixture model with the corresponding unrestricted counterpart.
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Overview

The different specifications of the score distribution vary in their properties and impli-
cations for the whole Rasch mixture model.

� The saturated model is very flexible. It can model any shape and is thus never
misspecified. However, it needs a potentially large number of parameters which
can be challenging in model estimation and selection.

� The mean-variance specification of the score model is more parsimonious as it only
requires two parameters per latent class. While this is convenient for model fit and
selection, it also comes at a cost: since it can only model unimodal or U-shaped
distributions (see Rost and von Davier, 1995), it is partially misspecified if the
score distribution is actually multimodal.

� A restricted score model is even more parsimonious. Therefore, the same advan-
tages in model fit and selection apply. Furthermore, it is invariant to the latent
structure in the score distribution. If a Rasch mixture model is used for DIF de-
tection, this is favorable as only differences in the item difficulties influence the
mixture. However, it is partially misspecified if the latent structure in the scores
and item difficulties coincides.

3.3 Monte Carlo study

The simple question “DIF or no DIF?” leads to the question whether the Rasch mixture
model is suitable as a tool to detect such violations of measurement invariance.

As the score distribution influences the estimation of the Rasch mixture model in general,
it is of particular interest how it influences the estimation of the number of latent classes,
the measure used to determine Rasch scalability.

3.3.1 Motivational example

As a motivation for the simulation design, consider the following example: The instru-
ment is a knowledge test which is administered to students from two different types of
schools and who have been prepared by one of two different courses for the knowledge
test. Either of the two groupings might be the source of DIF (or impact). If the group-
ings are available as covariates to the item responses of the students, then a test for DIF
between either school types or course types can be easily carried out using the LR test.
However, if the groupings are not available (or even observed) as covariates, then a DIF
test is still possible by means of the Rasch mixture model. The performance of such a
DIF assessment is investigated in our simulation study for different effects of school and
course type, respectively.
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Figure 3.1: Grouping structure in the motivational example.

In the following we assume that the school type is linked to ability difference (i.e., impact
but not DIF) while the course type is the source of DIF (but not impact). This can be
motivated in the following way (see also Figure 3.1): When the students from the two
school types differ in their mean ability, this is impact between these two groups. The
courses might be a standard course and a new specialized course. While the standard
course covers all topics of the test equally, the specialized course gives more emphasis to
a relatively advanced topic and due to time constraints less emphasis to a relatively basic
topic. This may lead to DIF between the students in the standard and the specialized
course. See the left panel of Figure 3.2 for illustrative item profiles of the standard course
(in dark gray) and the specialized course (in light gray).

Finally, the ability groups by school and the DIF groups by course can either coincide
or not. If all students in the first school type are being taught the standard course while
all students in the second school type are being taught the specialized course, the DIF
groups coincide with the ability groups. The DIF and ability groups do not coincide but
only overlap partly if both course types are taught in both school types: each DIF group
(based on the type of course taught) consists of a mix of students from both schools
and therefore from both ability groups. An illustration of coinciding and not coinciding
ability and DIF groups is provided in the upper and lower row of Figure 3.1, respectively.
Ability groups, based on school type, are shown in the columns, while DIF groups, based
on course type, are illustrated with dark and light gray for the standard course and
specialized course, respectively. This difference of coinciding or not coinciding DIF and
ability groups might have an influence on the Rasch mixture model’s ability to detect
the DIF because in the former case the score distributions differ between the two DIF
groups while in the latter case they do not.

Subsequently, a Monte Carlo study is carried out to investigate how the Rasch mixture
model performs in situations where such groupings are present in the underlying data-
generating process but are not available as observed covariates. Moreover, we vary
whether or not all students come from the same school type (i.e., from the same ability
distribution), whether or not all students receive the standard course (i.e., whether there
is DIF), and whether both school types use the same or different courses (i.e., whether the
groupings coincide or not). For all computations, the R system for statistical computing
(R Core Team, 2013) is used along with the add-on packages psychomix (Frick et al.,
2012) and clv (Nieweglowski, 2013).
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Scenario Latent class I Latent class II
Mean abilities Difficulties Mean abilities Difficulties

No impact (Θ = 0)

1 no DIF (∆ = 0) {0} βI — —
2 DIF (∆ > 0) {0} βI {0} βII

Impact (Θ > 0)

3 no DIF (∆ = 0) {−Θ/2,+Θ/2} βI — —
4 DIF (∆ > 0), not coinciding {−Θ/2,+Θ/2} βI {−Θ/2,+Θ/2} βII

5 DIF (∆ > 0), coinciding {−Θ/2} βI {+Θ/2} βII

Table 3.1: Simulation design. The latent-class-specific item parameters βI and βII differ
by ∆ for two elements and thus coincide for ∆ = 0, leaving only a single latent class.

3.3.2 Simulation design

The simulation design combines ideas from the motivational example with aspects from
the simulation study conducted by Rost (1990). Similar to the original simulation study,
the item parameters represent an instrument with increasingly difficult items. Here,
20 items are employed with corresponding item parameters βI which follow a sequence
from −1.9 to 1.9 with increments of 0.2 and hence sum to zero.

βI = (−1.9,−1.7, . . . , 1.7, 1.9)>

βII = (−1.9,−1.7, . . . ,−1.1 + ∆, . . . , 1.1−∆, . . . , 1.7, 1.9)>

To introduce DIF, a second set of item parameters βII is considered where items 5
and 16 are changed by ±∆. This approach is similar in spirit to that of Rost (1990)
– who reverses the full sequence of item parameters to generate DIF – but allows for
gradually changing from small to large DIF effect sizes. Subject abilities are drawn with
equal weights from two normal distributions with means −Θ/2 and +Θ/2 and standard
deviation 0.3, thus creating a sample with two groups of subjects: one group with a lower
mean ability and one with a higher mean ability.

In the simulations below, the DIF effect size ∆ ranges from 0 to 4 in steps of 0.2

∆ ∈ {0, 0.2, . . . , 4}

while the impact Θ covers the same range in steps of 0.4:

Θ ∈ {0, 0.4, . . . , 4}.

Impact and DIF, or lack thereof, can be combined in several ways. Table 3.1 provides an
overview and Figures 3.2, 3.3, and 3.4 show illustrations. In the following, the different
combinations of impact and DIF are explained in more detail and connected to the
motivational example:

� If the simulation parameter ∆ for the DIF effect size is set to zero, both sets of
item parameters, βI and βII , are identical and no DIF is present. Since CML
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Figure 3.2: Scenario 2. Left: Item difficulties with DIF (∆ = 2). Right: Stacked
histogram of unimodal score distribution with homogeneous abilities (Θ = 0).
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Figure 3.3: Scenario 3. Left: Item difficulties without DIF (∆ = 0). Right: Histogram
of bimodal score distribution with impact (Θ = 2).
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Figure 3.4: Stacked histograms of score distributions for Scenarios 4 (left) and 5 (right)
with DIF (∆ = 2). Left: impact and DIF, not coinciding (Θ = 2). Right: impact and
DIF, coinciding (Θ = 2). For item difficulties see Figure 3.2 (left).
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is employed, model selection and parameter estimation is typically expected to be
independent of whether or not an impact is present (Scenario 1 and 3 in Table 3.1).

In the example: Only the standard course is taught and hence no DIF exists.

� If ∆ > 0, the item parameter set βII is different from βI . Hence, there is DIF and
two latent classes exist (Scenarios 2, 4, and 5). Both classes are chosen to be of
equal size in this case. For an illustration see the left panel of Figure 3.2.

In the example: Both courses are taught, thus leading to DIF. The standard course
corresponds to the straight line as the item profile while the specialized course
corresponds to the spiked item profile with relatively difficult item 16 being easier
and the relatively easy item 5 being more difficult for students in this specialized
course than for students in the standard course.

� If the simulation parameter Θ for the impact is set to zero (Scenarios 1 and 2), then
the resulting score distribution is unimodal. For an illustration of such a unimodal
score distribution see the right panel of Figure 3.2. This histogram illustrates
specifically Scenario 2 where no impact is present but DIF exists. The histogram
is shaded in light and dark gray for the two DIF groups and thus to be read like a
“stacked histogram”.

In the example: All students are from the same school and hence there is no impact.
However, both types of courses may be taught in this one school, thus leading to
DIF as in Scenario 2.

� If Θ > 0, subject abilities are sampled with equal weights from two normal dis-
tributions with means {−Θ/2,+Θ/2}, thus generating impact. When no DIF is
included (Scenario 3), the resulting score distribution moves from being unimodal
to being bimodal with increasing Θ. The two modi of high and low scores represent
the two groups of subjects with high and low mean abilities, respectively. However,
only a medium gray is used to shade the illustrating histogram in Figure 3.3 as no
DIF groups are present.

In the example: Only the standard course is taught in both school types. Hence
no DIF is present but impact between the school types.

� If there is DIF (i.e., ∆ > 0) in addition to impact (i.e., Θ > 0), subjects can be
grouped both according to mean ability (high vs. low) and difficulty (straight vs.
spiked profile in βI and βII , respectively).

These groups can coincide: For subjects with low mean ability −Θ/2, item difficul-
ties βI hold, while for subjects with high mean ability +Θ/2, item difficulties βII

hold. This is simulated in Scenario 5 and labeled Impact and DIF, coinciding. The
resulting score distribution is illustrated in the right panel of Figure 3.4. Subjects
for whom item difficulties βI hold are shaded in dark gray and as they also have
lower mean abilities, their scores are all relatively low. Conversely, subjects for
whom item difficulties βII hold are shaded in light gray and as they also have
higher mean abilities, their scores are all relatively high.

Additionally, the DIF groups and ability groups can also not coincide: Subjects
in either DIF group may stem from both ability groups, not just one. This is

46



simulated in Scenario 4 and labeled Impact and DIF, not coinciding. The resulting
score distribution is illustrated in the left panel of Figure 3.4. Again, subjects
for whom item difficulties βI and βII hold are shaded in dark and light gray,
respectively. As subjects stem from both ability groups (high vs. low abilities),
both score distributions are bimodal.

In the example: Students from both school types and from both course types are
considered, thus leading to both impact and DIF. Either both courses are taught
at both schools (Scenario 4, not coinciding) or the standard course is only taught
in the first school and the specialized course is only taught at the second school
(Scenario 5, coinciding).

Note that Scenario 1 is a special case of Scenario 2 where ∆ is reduced to zero as well
as a special case of Scenario 3 where Θ is reduced to zero. Therefore, in the following,
Scenario 1 is not inspected separately but included in both the setting of No impact
with DIF (Scenario 2) and the setting of Impact without DIF (Scenario 3) as a reference
point. Similarly, Scenarios 4 and 5 both can be reduced to Scenario 3 if ∆ is set to
zero. It is therefore also included in both the setting of Impact and DIF, not coinciding
(Scenario 4) and the setting of Impact and DIF, coinciding (Scenario 5) as a reference
point.

For each considered combination of ∆ and Θ, 500 datasets of 500 observations each
are generated. Larger numbers of datasets or observations lead to very similar results.
Observations with raw scores of 0 or m are removed from the dataset as they do not
contribute to the estimation of the Rasch mixture model (Rost, 1990). For each dataset,
Rasch mixture models for each of the saturated, mean-variance, and restricted score
specifications are fitted for K = 1, 2, 3.

3.3.3 False alarm rate and hit rate

The main objective here is to determine how suitable a Rasch mixture model, with
various choices for the score model, is to recognize DIF or the lack thereof.

For each dataset and type of score model, models with K = 1, 2, 3 latent classes are
fitted and the K̂ associated with the minimum BIC is selected. Choosing one latent
class (K̂ = 1) then corresponds to assuming measurement invariance while choosing
more than one latent class (K̂ > 1) corresponds to assuming violations of measurement
invariance. While Rasch mixture models do not constitute a formal significance test,
the empirical proportion among the 500 datasets with K̂ > 1 corresponds in essence to
the power of DIF detection if ∆ > 0 (and thus two true latent classes exist) and to the
associated type I error of a corresponding test if ∆ = 0 (and thus only one true latent
class exists). If the rate corresponds to power, it will be referred to as hit rate whereas
if it corresponds to a type I error it will be referred to as false alarm rate.

In the following subsections, the key results of the simulation study will be visualized.
The exact rates for all conditions are included as a dataset in the R package psychomix,
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for details see the section on computational details.

Scenario 2: No impact with DIF

This scenario is investigated as a case of DIF that should be fairly simple to detect. There
is no impact as abilities are homogeneous across all subjects so the only latent structure
to detect is the group membership based on the two item profiles. This latent structure is
made increasingly easy to detect by increasing the difference between the item difficulties
for both latent groups. In the graphical representation of the item parameters (left panel
of Figure 3.2) this corresponds to enlarging the spikes in the item profile.

Figure 3.5 shows how the rate of choosing a model with more than one latent class (K̂ >
1) increases along with the DIF effect size ∆. At ∆ = 0, this is a false alarm rate. It
is around 7% for the saturated model and very close to zero for the mean-variance and
the saturated score model (< 1%). With increasing ∆ > 0, the rate is a hit rate. For
low values of ∆ the two more parsimonious versions of the Rasch mixture model (with
mean-variance and restricted score distribution) are not able to pick up the DIF but
at around ∆ = 3 the hit rate for the two models increases and almost approaches 1
at ∆ = 4. Not surprisingly, the restricted score specification performs somewhat better
because in fact the raw score distributions do not differ between the two latent classes.
The baseline hit rate of the saturated model for low values of ∆ is the same as the false
alarm rate for ∆ = 0. It only increases beyond the same threshold (∆ = 3) as the hit rate
of the other two models. However, its rate is much lower compared to the other two score
model (only around 30%). The reason is that it requires 18 additional score parameters
for an additional latent class which is “too costly” in terms of BIC. Hence, K̂ = 1 is
chosen for most Rasch mixture models using a saturated score distribution.

The number of iterations in the EM algorithm which are necessary for the estimation
to converge is much lower for the mean-variance and the restricted model than for the
saturated model. Since the estimation of the saturated model is more extensive due to
the higher number of parameters required by this model, it does not converge in about
10% of the cases before reaching the maximum number of iterations which was set to 400.
The mean-variance and saturated model usually converge within the first 200 iterations.

Brief summary: The mean-variance and restricted model have higher hit rates than the
saturated model in the absence of impact.

Scenario 3: Impact without DIF

Preferably, a Rasch mixture model should not only detect latent classes if the assumption
of measurement invariance is violated but it should also indicate a lack of latent structure
if indeed the assumption holds. In this scenario, the subjects all stem from the same
class, meaning each item is of the same difficulty for every subject. However, subject
abilities are simulated with impact resulting in a bimodal score distribution as illustrated
in Figure 3.3.
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Figure 3.5: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 2
(DIF without impact, i.e., Θ = 0).

Here, the rate of choosing more than one latent class can be interpreted as a false alarm
rate (Figure 3.6). The restricted score model is invariant against any latent structure in
the score distribution and thus almost always (≤ 0.2%) suggests K̂ = 1 latent class based
on the DIF-free item difficulties. The rate does not approach any specific significance level
as the Rasch mixture model, regardless of the employed score distribution, is not a formal
significance test. The saturated model also picks K̂ = 1 in most of the simulation. This
might be due to its general reluctance to choose more than one latent class as illustrated
in Figure 3.5 or the circumstance that it can assume any shape (including bimodal
patterns). However, the mean-variance score distribution can only model unimodal or
U-shaped distributions as mentioned above. Hence, with increasing impact and thus
increasingly well-separated modes in the score distribution, the Rasch mixture model
with this score specification suggests K̂ > 1 latent classes in up to 53% of the cases. Note,
however, that these latent classes do not represent the DIF groups (as there are none) but
rather groups of subjects with high vs. low abilities. While this may be acceptable (albeit
unnecessarily complex) from a statistical mixture modeling perspective, it is misleading
from a psychometric point of view if the aim is DIF detection. Only one Rasch model
needs to be estimated for this type of data, consistent item parameter estimates can be
obtained via CML and all observations can be scaled in the same way.

Brief summary: If measurement invariance holds but ability differences are present, the
mean-variance model exhibits a high false alarm rate while the saturated and restricted
model are not affected.

Scenario 4: Impact and DIF, not coinciding

In this scenario, there is DIF (and thus two true latent classes) if ∆ > 0. Again,
Scenario 3 with ∆ = 0 (and thus without DIF) is included as a reference point. However,
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Figure 3.6: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 3
(impact without DIF, i.e., ∆ = 0).

unlike in Scenario 2, the abilities within the latent classes are not homogeneous but two
ability groups exist, which do not coincide with the two DIF groups. Nonetheless, the
score distribution is the same across both latent classes (illustrated in the left panel of
Figure 3.4).

Figure 3.7 again shows the rate of choosing K̂ > 1 for increasing DIF effect size ∆ for two
levels of impact (Θ = 2.4 and 3.6), exemplary for medium and high impact. If impact is
small (e.g., Θ = 0.4), the rates are very similar to the case of completely homogeneous
abilities without impact (Figure 3.5 with Θ = 0) and thus not visualized here. While the
rates for the restricted and the saturated score model do not change substantially for an
increased impact (Θ = 2.4 and 3.6), the mean-variance model is influenced by this change
in ability differences. While the hit rate is increased to around 20% over the whole range
of ∆, the false alarm rate at ∆ = 0 is increased to the same extent. Moreover, the hit
rate only increases noticeably beyond the initial false alarm rate at around ∆ = 3, i.e.,
the same DIF effect size at which the restricted and mean-variance specifications have
an increasing hit rate given homogeneous abilities without impact. Thus, given rather
high impact (Θ = 3.6) the hit rate is not driven by the DIF detection but rather the
model’s tendency to assign subjects with high vs. low abilities into different groups (as
already seen in Figure 3.6).

As Rasch mixture models with K = 1, 2, 3 classes are considered, selecting K̂ > 1 classes
can either mean selecting the correct number ofK = 2 or overselecting K̂ = 3 classes. For
the saturated and restricted specifications overselection is rare (occurring with rates of
less than 9% or less than 1%, respectively). However, similar to Scenario 3 overselection
is not rare for the mean-variance specification. Figure 3.8 depicts the rates of selecting
K̂ = 2 and K̂ = 3 classes, respectively, for increasing ∆ at Θ = 3.6. If the chances of
finding the correct number of classes increase with the DIF effect size ∆, the rate for
overselection (K̂ = 3) should drop with increasing ∆. For this Scenario 4, denoted with
hollow symbols, this rate stays largely the same (around 25%) and even slightly increases
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Figure 3.7: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 4
(impact and DIF, not coinciding).
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Figure 3.8: Rates of choosing the correct number of classes (K̂ = 2) or overselecting
the number of classes (K̂ = 3) for the Rasch mixture model with mean-variance score
specification in Scenarios 4 (hollow, impact within DIF groups) and 5 (solid, impact
between DIF groups).

beyond this level, starting from around ∆ = 3. This illustrates again the pronounced
tendency of the mean-variance model for overselection in cases of high impact.

Brief summary: If impact is simulated within DIF groups, the mean-variance model has
higher hit rates than the saturated and restricted models. However, the latent classes
estimated by the mean-variance model are mostly based on ability differences if the
DIF effect size is low. If the DIF effect size is high, the mean-variance model tends to
overestimate the number of classes.
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Figure 3.9: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 5
(impact and DIF, coinciding).

Scenario 5: Impact and DIF, coinciding

In Scenario 5, there is also DIF (i.e., ∆ > 0) and impact. However, in contrast to
Scenario 4 the ability and DIF groups coincide (see the right panel of Figure 3.4). Fur-
thermore, Scenario 3 is included also here as the reference point without DIF (∆ = 0).

Again, small ability differences do not strongly influence the rate of choosing more than
one latent class (rates for low levels of impact, such as Θ = 0.4, are similar to those
for Θ = 0 as depicted in Figure 3.5). Recall, both mean-variance and restricted speci-
fication have comparable hit rates for DIF detection starting from around ∆ = 3 while
the saturated specification has lower hit rates.

As impact increases (Figure 3.9), the hit rates of all models increases as well because
the ability differences contain information about the DIF groups: separating subjects
with low and high abilities also separates the two DIF groups (not separating subjects
within each DIF group as in the previous setting). However, for the mean-variance model
these increased hit rates are again coupled with a highly increased false alarm rate at
∆ = 0 of 26% and 50% for Θ = 2.4 and 3.6, respectively. The restricted score model,
on the other hand, is invariant to latent structure in the score distribution and thus
performs similarly as in previous DIF scenarios, suggesting more than one latent class
past a certain threshold of DIF intensity, albeit this threshold being a bit lower than
when ability groups and DIF groups do not coincide (around ∆ = 2). The saturated
model detects more than one latent class at a similar rate to the restricted score model
for medium or high impact but its estimation converges more slowly and requires more
iterations of the EM algorithm than the other two score models.

Finally, the potential issue of overselection can be considered again. Figure 3.8 (solid
symbols) shows that this problem disappears for the mean-variance specification if both
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DIF effect size ∆ and impact are large and coincide. For the restricted model overse-
lection is again very rare throughout (occurring in less than 1% of all cases) while the
saturated model overselects in up to 29% of the datasets.

Brief summary: If abilities differ between DIF groups, the mean-variance model detects
the violation of measurement invariance for smaller DIF effect sizes than the saturated
and restricted model. While the mean-variance model does not overselect the number
of components in this scenario, the high hit rates are connected to a high false alarm
rate when no DIF is present but impact is high. This does not affect the other two score
models.

3.3.4 Quality of estimation

Although here the Rasch mixture model is primarily used analogously to a global DIF
test, model assessment goes beyond the question whether or not the correct number of
latent classes is found. Once the number of latent classes is established/estimated, it is of
interest how well the estimated model fits the data. Which groups are found? How well
are the parameters estimated? In the context of Rasch mixture models with different
score distributions, both of these aspects depend heavily on the posterior probabilities
p̂ik (Equation 3.5) as the estimation of the item parameters depends on the score dis-
tribution only through these. If the p̂ik were the same for all three score specifications,
the estimated item difficulties were the same as well. Hence, the focus here is on how
close the estimated posterior probabilities are to the true latent classes in the data. If
the similarity between these is high, CML estimation of the item parameters within the
classes will also yield better results for all score models.

This is a standard task in the field of cluster analysis and we adopt the widely used
Rand index (Rand, 1971) here: Each observation is assigned to the latent class for which
its posterior probability is highest yielding an estimated classification of the data which
is compared to the true classification. For this comparison, pairs of observations are
considered. Each pair can either be in the same class in both the true and the estimated
classification, in different classes for both classifications or it can be in the same class for
one but not the other classification. The Rand index is the proportion of pairs for which
both classifications agree. Thus, it can assume values between 0 and 1, indicating total
dissimilarity and similarity, respectively.

In the following, the Rand index for models with the true number of K = 2 latent classes
in Scenarios 4 and 5 (with DIF) is considered. Thus, the question of DIF detection (or
model selection) is not investigated again but only the quality of latent class recovery
(assuming the number of classes K to be known or correctly selected). The top row
of Figure 3.10 depicts the average Rand index for data from Scenario 4 (impact and
DIF, not coinciding). Here, all three score specifications find similarly well matching
classifications, while the Rand index generally decreases with increasing impact (left to
right panel). In particular, while the mean-variance score model has problems finding
the correct number of latent classes in this scenario, it only performs slightly worse than
the other two specifications in determining the correct classes if the number were known.
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Figure 3.10: Average Rand index for models with K = 2 latent classes. Top row:
Scenario 4 (impact and DIF, not coinciding). Bottom row: Scenario 5 (impact and DIF,
coinciding).

Similarly, if it is provided with the correct number of classes, the saturated model also
identifies the correct classes equally well compared to the other models – despite its
difficulties with convergence for higher DIF effect sizes.

However, in Scenario 5 where the score distribution contains information about the
DIF groups, the three score specifications perform very differently as the bottom row of
Figure 3.10 shows. Given the correct number of classes, the mean-variance model is most
suitable to uncover the true latent classes, yielding Rand indices close to 1 if both DIF
effect size and impact are large. The saturated specification follows a similar pattern
albeit with poorer results, reaching values of up to 0.87. However, the classifications
obtained from the restricted score specification do not match the true groups well in this
scenario, remaining below 0.52 if impact is high. The reason is that the restricted score
model is partially misspecified as the score distributions differ substantially across DIF
groups.
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3.3.5 Summary and implications for practical use

Given various combinations of DIF and ability impact, the score models are differently
suitable for the two tasks discussed here – DIF detection and estimation of item param-
eters in subgroups. Starting with a summary of the results for DIF detection:

� The saturated score model has much lower hit rates than the other two specifica-
tions, i.e., violation of measurement invariance remains too often undetected. Only
if high impact and high DIF effect sizes coincide does the saturated model perform
similarly well as the restricted model.

� The mean-variance model has much higher hit rates. However, if impact is present
in the abilities, this specification has highly inflated false alarm rates. Hence, if
the mean-variance model selects more than one latent class it is unclear whether
this is due to DIF or just varying subject abilities. Thus, measurement invariance
might still hold even if more than one latent class is detected.

� The restricted score model also has high hit rates, comparable to the mean-variance
model if abilities are rather homogeneous. But unlike the mean-variance specifi-
cation, its false alarm rate is not distorted by impact. Its performance is not
influenced by the ability distribution and detecting more than one latent class
reliably indicates DIF, i.e., a violation of measurement invariance.

Hence, if the Rasch mixture model is employed for assessing measurement invariance or
detecting DIF, then the restricted score specification appears to be most robust. Thus,
the selection of the number of latent classes should only be based on this specification.

DeMars (2010) illustrate how significance tests based on the observed (raw) scores in
reference and focal groups suffer from inflated type I error rates with an increased sample
size if impact is present. This does not apply to the false alarm rate of Rasch mixture
models because not a significance test but rather model selection via BIC is carried out.
The rate of the BIC selecting the correct model increases with larger sample size if the
true model is a Rasch mixture model. Since consistent estimates are employed, a larger
sample size also speeds up convergence, which is particularly desirable for the saturated
model if the number of latent classes and thus the number of parameters is high.

Given the correct number of classes, the different score models are all similarly suitable to
detect the true classification if ability impact does not contain any additional information
about the DIF groups. However, if ability impact is highly correlated with DIF groups
in the data and the ability groups thus coincide with the DIF groups, this information
can be exploited by the unrestricted specifications while it distracts the restricted model.

Thus, while the selection of the number of latent classes should be based only on the
restricted score specification, the unrestricted mean-variance and saturated specifica-
tions might still prove useful for estimating the Rasch mixture model (after K̂ has been
selected).
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We therefore recommend a two-step approach for DIF detection via a Rasch mixture
model. First, the number of latent classes is determined via the restricted score model.
Second, if furthermore the estimation of the item difficulties is of interest, the full selec-
tion of score models can the be utilized. While the likelihood ratio test is not suitable
to test for the number of latent classes, it can be used to establish the best fitting score
model, given the number of latent classes. If this approach is applied to the full range
of score models (saturated and mean-variance, both unrestricted and restricted), the
nesting structure of the models needs to be kept in mind.

3.4 Empirical application: Verbal aggression

We use a dataset on verbal aggression (De Boeck and Wilson, 2004) to illustrate this
two-step approach of first assessing measurement invariance via a Rasch mixture model
with a restricted score distribution and then employing all possible score models to find
the best fitting estimation of the item difficulties.

Participants in this study are presented with one of two potentially frustrating situations
(S1 and S2):

� S1: A bus fails to stop for me.

� S2: I miss a train because a clerk gave me faulty information.

and a verbally aggressive response (cursing, scolding, shouting). Combining each sit-
uation and response with either “I want to” or “I do” leads to the following 12 items:

S1WantCurse S1DoCurse S1WantScold S1DoScold S1WantShout S1DoShout
S2WantCurse S2DoCurse S2WantScold S2DoScold S2WantShout S2DoShout

First, we assess measurement invariance with regard to the whole instrument: we fit a
Rasch mixture model with a restricted score distribution for K = 1, 2, 3, 4 and employ
the BIC for model selection. Note that the restricted versions of the mean-variance and
saturated model only differ in their log-likelihood by a constant factor and therefore lead
to the same model selection. Results are presented in Table 3.2.

The BIC for a Rasch mixture model with more than one latent class is smaller than the
BIC for a single Rasch model, thus indicating that measurement invariance is violated.
The best fitting model has K̂ = 3 latent classes. Given this selection of K, we want to
gain further insight in the data and thus want to establish the best fitting Rasch mixture
model with K = 3 latent classes. Four different models are conceivable: either using
a restricted or unrestricted score model, and either using a saturated or mean-variance
specification. The results for all four options are presented in Table 3.3. Note that the
models with restricted saturated score distribution and restricted mean-variance score
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Model k #Df logL BIC
restricted (mean-variance) 1 13 −1900.9 3874.6
restricted (mean-variance) 2 25 −1853.8 3847.8
restricted (mean-variance) 3 37 −1816.9 3841.4
restricted (mean-variance) 4 49 −1792.0 3858.8

Table 3.2: DIF detection by selecting the number of latent classes K̂ using the restricted
Rasch mixture model.

Model k #Df logL BIC
saturated 3 65 −1795.2 3955.1
restricted (saturated) 3 45 −1814.1 3880.6
mean-variance 3 41 −1812.2 3854.4
restricted (mean-variance) 3 37 −1816.9 3841.4

Table 3.3: Selection of the score distribution given the number of latent classes K̂ = 3.

distribution lead to identical item parameter estimates. However, it is still of interest
to fit them separately because each of the restricted specifications is nested within the
corresponding unrestricted specification. Furthermore, the mean-variance distribution is
nested within the saturated distribution.

As K = 3 is identical for all of these four models, standard likelihood ratio tests can be
used for comparing all nested models with each other. Testing the most parsimonious
score model, the restricted mean-variance model, against its unrestricted version and the
restricted saturated model at a 5% level shows that a more flexible score model does not
yield a significantly better fit. The p-value are 0.051 and 0.686, respectively. Hence, the
restricted mean-variance distribution is adopted here which also has the lowest BIC.

To visualize how the three classes found in the data differ, the corresponding item profiles
are shown in Figure 3.11.

� The latent class in the right panel (with 111 observations) shows a very regular zig-
zag-pattern where for any type of verbally aggressive response actually “doing” the
response is considered more extreme than just “wanting” to respond a certain way
as represented by the higher item parameters for the second item, the “do-item”,
than the first item, the “want-item”, of each pair. The three types of response
(cursing, scolding, shouting) are considered increasingly aggressive, regardless of
the situation (first six items vs. last six items).

� The latent class in the left panel (with 53 observations) distinguishes more strongly
between the types of response. However, the relationship between wanting and
doing is reversed for all responses except shouting. It is more difficult to agree to the
item“I want to curse/scold”than to the corresponding item“I do curse/scold”. This
could be interpreted as generally more aggressive behavior where one is quick to
react a certain way rather than just wanting to react that way. However, shouting
is considered a very aggressive response, both in wanting and doing.
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Figure 3.11: Item profiles for the Rasch mixture model with K̂ = 3 latent classes using
a restricted mean-variance score distribution for the verbal aggression data.

� The remaining latent class (with 109 observations considerably smaller), depicted
in the middle panel, does not distinguish that clearly between response types,
situations or wanting vs. doing.

Therefore, not just a single item or a small number of items have DIF but the underlying
want/do relationship of the items is different across the three classes. This instrument
thus works differently as a whole across classes.

In summary, the respondents in this study are not scalable to one single Rasch-scale but
instead need several scales to represent them accurately. A Rasch mixture model with a
restricted score distribution is used to estimate the number of latent classes. Given that
number of classes, any type of score model is conceivable. Here, the various versions
are all fairly similar and the restricted mean-variance specification is chosen based on
likelihood ratio tests. Keep in mind that the resulting fits can be substantially different
from each other as shown in the simulation study, in particular for the case of impact
between DIF classes. The latent classes estimated here differ mainly in their perception
of the type and the “want/do”-relationship of a verbally aggressive response.

3.5 Conclusion

Unlike in a single Rasch model, item parameter estimation is not independent of the score
distribution in Rasch mixture models. The saturated and mean-variance specification of
the score model are both well-established. A further option is the new restricted score
specification introduced here. In the context of DIF detection, only the restricted score
specification should be used as it prevents confounding effects of impact on DIF detection
while exhibiting hit rates positively related to DIF effect size. Given the number of latent
classes, it may be useful to fit the other score models as well, as they might improve
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estimation of group membership and therefore estimation of the item parameters. The
best fitting model can be selected via the likelihood ratio test or an information criterion
such as the BIC. This approach enhances the suitability of the Rasch mixture model as
a tool for DIF detection as additional information contained in the score distribution is
only employed if it contributes to the estimation of latent classes based on measurement
invariance.

Computational details

An implementation of all versions of the Rasch mixture model mentioned here is freely
available under the General Public License in the R package psychomix from the Com-
prehensive R Archive Network. Accompanying the package at http://CRAN.R-project.
org/package=psychomix is a dataset containing all the simulation results and a vignette
with a replication of the verbal aggression example.
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Chapter 4

To Split or to Mix? Tree vs.
Mixture Models for Detecting
Subgroups

This chapter is a (slightly) modified version of Frick et al. (2014b), published in
COMPSTAT 2014 - Proceedings in Computational Statistics.

Abstract:
A basic assumption of many statistical models is that the same set of model parameters
holds for the entire sample. However, different parameters may hold in subgroups (or
clusters) which may or may not be explained by additional covariates. Finite mixture
models are a common technique for detecting such clusters and additional covariates
(if available) can be included as concomitant variables. Another approach that relies
on covariates for detecting the clusters are model-based trees. These recursively parti-
tion the data by splits along the covariates and fit one model for each of the resulting
subgroups. Both approaches are presented in a unifying framework and their relative
(dis)advantages for (a) detecting the presence of clusters and (b) recovering the group-
ing structure are assessed in a simulation study, varying both the parameter differences
between the clusters and their association with the covariates.

4.1 Introduction

A basic assumption of many statistical models is that its set of parameters applies to all
observations. However, subgroups may exist for which different sets of parameters hold,
e.g., the relationship between some response and regressors might be different for younger
and older individuals. If the breakpoint which separates “younger” and “older” were
known, parameter stability can simply be assessed by checking for parameter differences
between these two specific subgroups. However, if the breakpoint is unknown or if
there is a smooth transition between “young” and “old”, the subgroups can be still be
detected in a data-driven way. Either a finite mixture model (McLachlan and Peel, 2000)
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can be employed, possibly using age as a concomitant variable (Dayton and Macready,
1988) to model smooth transitions between clusters. Alternatively, model-based recursive
partitioning (Zeileis et al., 2008) can capture the difference by one or more splits in the
partitioning variable age, yielding a tree structure (similar to classification and regression
trees, Breiman, Friedman, Olshen, and Stone, 1984) where each leaf is associated with a
parametric model.

Given their shared goal of establishing subgroups to capture parameter instabilities across
subgroups, how do these mixture models and model-based trees compare? A unifying
framework for both methods is presented and their relative (dis)advantages for (a) detect-
ing the presence of clusters with different parameters and (b) recovering the underlying
grouping structure are assessed in a simulation study.

4.2 Theory

Although both mixture models and model-based trees can be applied to general para-
metric models estimated by means of the maximum likelihood (ML) principle, we focus
on linear regression here because it is the most simple and commonly applied model:

yi = x>i β + εi (4.1)

with response yi, regressor vector xi, and errors εi for observations i = 1, . . . , n. The
unknown vector of regression coefficients β can be estimated by least squares, which yields
the same estimates as ML estimation under the assumption of independent normal errors
with variance σ2. In the latter case the log-likelihood is given by

∑n
i=1 log φ(yi;x

>
i β, σ

2)
where φ(·) denotes the probability density function of the normal distribution.

Within this framework, both trees and mixture models can assess whether the same
coefficient vector β holds for all n observations and, if parameter stability is violated,
simultaneously find clusters/subgroups and estimate the associated cluster-specific co-
efficients. Further covariates zi can be used as concomitant or partitioning variables,
respectively, to establish these clusters.

4.2.1 Finite mixture models

Finite mixture models assume that the data stem from K different subgroups with
unknown subgroup membership and subgroup-specific parameters β(k) and σ(k) (k =
1, . . . , K). The full mixture model is a weighted sum over these separate models (or
components):

f(yi;xi, zi, β(1), σ(1), . . . , β(K), σ(K)) =
K∑
k=1

πk(zi) · φ(yi;x
>
i β(k), σ

2
(k)). (4.2)
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The component weights may depend on the additional covariates zi through a concomi-
tant variable model (Dayton and Macready, 1988), typically a multinomial logit model

πk(zi) =
exp(z>i α(k))∑K
g=1 exp(z>i α(g))

(4.3)

with component-specific coefficients α(k). For identifiability, one group (typically the
first) is used as a reference group and the coefficients of this group are set to zero:
α(1) = 0. This also includes the special case without concomitant variables, where zi = 1
is just an intercept yielding component-specific weights πk(zi) = π(k).

Given the number of subgroups K, all parameters in the mixture model are typically
estimated simultaneously by ML using the expectation-maximization (EM) algorithm.
To choose the number of subgroups K, the mixture model is typically fitted for K =
1, 2, . . . and then the best-fitting model is selected by some information criterion. Here,
we employ the Bayesian Information Criterion (BIC).

4.2.2 Model-based recursive partitioning

Model-based recursive partitioning (Zeileis et al., 2008) can also detect subgroups for
which different model parameters hold. These subgroups are separated by sample splits
in the covariates zi used for partitioning. The algorithm performs the following steps:

1. Estimate the model parameters in the current subgroup.

2. Test parameter stability along each partitioning variable zij.

3. If any instability is found, split the sample along the variable zij∗ with the highest
instability. Choose the breakpoint with the highest improvement in model fit.

4. Repeat 2–4 on the resulting subsamples until no further instability is found.

Here, we only briefly outline how these parameter instability tests work and refer to
Zeileis and Hornik (2007) for the theoretical details. The basic idea is that the scores,
i.e., the derivative of log φ(·) with respect to the parameters, evaluated at the estimated
coefficients behave similar to least squares residuals: They sum to zero and if the model
fits well they should fluctuate randomly around zero. However, if the parameters change
along one of the partitioning variables zij, there should be systematic departures from
zero. Such departures along a covariate can be captured by a cumulative sum of the
scores (ordered by the covariate) and aggregated to a test statistic, e.g., summing the
absolute or squared cumulative deviations. Summing the scores along a categorical
partitioning variable then leads to a statistic that has an asymptotic χ2 distribution
while aggregation along numeric partitioning variables can be done in a way that yields
a maximally-selected score (or Lagrange multiplier) test. In either case, the p-value
pj can be obtained for each ordering along zij without having to re-estimate the model.
The p-values are then Bonferroni-adjusted to account for testing along multiple orderings
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and partitioning continues until there is no further significant instability (here at the 5%
level).

Since each split can be expressed through an indicator function I(·) (for going left or
right), each branch of the tree can be represented as a product of such indicator functions.
Therefore, the model-based tree induced by recursive partitioning is in fact also a model
of type (4.2), albeit with rather different weights:

πk(zi) =

Jk∏
j=1

I(s(j|k) · zi(j|k) > b(j|k)) (4.4)

where z(j|k) denotes the j-th partitioning variable for terminal node k, b(j|k) is the asso-
ciated breakpoint, s(j|k) ∈ {−1, 1} the sign (signaling splitting to the left or right), and
Jk the number of splits leading up to node k.

4.2.3 Differences and similarities

While both methods are based on the same linear regression model and aim at detecting
subgroups with stable parameters, certain differences arise:

� Because K is fixed for each mixture model, it is based on model selection via
an information criterion whereas the selection of K through a tree is based on
significance tests.

� Covariates z are optional for mixture models and latent subgroups can be esti-
mated. For a tree, those covariates are required. Furthermore, if no covariates
associated with the subgroups are available, the groups cannot be detected.

� The concomitant model (4.3) assumes a smooth, monotonic transition between
subgroups. The sample splits of a tree (4.4) represent abrupt shifts, multiple splits
in a covariate are able to represent a non-monotonic transition. While variable
selection is inherent to trees, it requires an additional step for mixtures models.

� Trees yield a hard clustering and mixtures a probabilistic clustering of the obser-
vations.

To investigate how the aforementioned differences between the two methods affect their
ability to detect parameter instability, a simulation study is conducted, which is described
in the next section.

4.3 Simulation study

To determine how well mixture models and model-based trees detect parameter insta-
bility, two basic questions are asked. First, is any instability found at all? Second, if
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so, are the correct subgroups recovered? These two aspects are potentially influenced
by several factors: How does the relationship between the response y and the regressors
x differ between the subgroups and how strongly does it differ? If there are any addi-
tional covariates z available, how and how strongly are those covariates connected to the
subgroups? In general, we expect the following:

� Given the covariates z are associated strongly enough with the subgroups, trees
are able to detect smaller differences in β(k) than mixtures because they employ
a significance test for each parameter rather than an information criterion for full
sets of parameters. In contrast, mixtures are more suitable to detect subgroups if
they are only loosely associated with the covariates z, as long as the differences in
β(k) are strong enough.

� If the association between covariates and subgroups is smooth and monotonic,
mixtures are more suitable to detect the subgroups whereas trees are more suitable
if the association is characterized by abrupt shifts and possibly non-monotonic.

� If several covariates determine the subgroups simultaneously, the mixture is more
suitable, whereas trees are more suitable if z includes several noise variables un-
connected to the subgroups.

Motivated by these considerations, the simulation design is explained in the next section.

4.3.1 Simulation design

A single regressor x and four additional covariates z1, . . . , z4 are drawn from a uniform
distribution on [−1, 1]. The response y is computed with errors drawn from a standard
normal distribution. Two subgroups of equal size are simulated. How they differ is
governed by the form of β – either in their intercept, slope, or both – and the magnitude
of their differences is governed by the simulation parameter κ (Table 4.1). How the
covariates are connected to the subgroups is governed by the form of πk(z) – either
via a logistic or a step function – and the strength of this association is governed by
simulation parameter ν. Here, three scenarios for πk(z) are considered: a smooth logistic
transition along z1, a smooth logistic transition along z1 and z2 simultaneously, and
a sharp transition along z1 with two breakpoints (labeled axis1, diagonal, and double
step, respectively). The corresponding parameter vector of the logistic function and the
breakpoints can be found in Table 4.1. The simulation parameters cover the following
ranges: κ ∈ {0, 0.05, . . . , 1} and ν ∈ {−1,−0.5, . . . , 2}. Note that β(1) and β(2) are
identical if κ = 0 and thus only one subgroup is simulated. Each coefficient scenario is
combined with every covariate scenario and the sample size n ∈ {200, 500, 1000} is varied.
The covariates z3 and z4 are always noise variables and thus either included or excluded
in z. For each of these conditions, 500 datasets are drawn and three methods applied:
a model-based tree, a plain mixture, and a mixture with concomitant variables. Both
mixtures are fitted with K = {1, . . . , 4} and K̂ selected via BIC. For all computations,
the R system for statistical computing (R Core Team, 2013) is used along with the add-on
packages partykit (Hothorn and Zeileis, 2014) and flexmix (Grün and Leisch, 2008).
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Label Details

Coefficients intercept β(1) = (κ, 0)> β(2) = (−κ, 0)>

slope β(1) = (0, κ)> β(2) = (0,−κ)>

both β(1) = (κ,−κ)> β(2) = (−κ, κ)>

Covariates axis1 logistic with α(2) = (exp(ν), 0, 0, 0)>

diagonal logistic with α(2) = (exp(ν),− exp(ν), 0, 0)>

double step tree with π2(z) = I(z1 > −0.5)I(z1 < 0.5)

Table 4.1: Simulation scenarios for regression coefficients and covariates.

4.3.2 Outcome assessment

To address the first question of whether or not any instability is found, the hit rate is
computed: This is the rate of selecting more than one subgroup – this corresponds to
splitting at least once for a tree and to selecting K̂ > 1 for a mixture. To address the
second question if the right subgroups are found, the estimated clustering is compared to
the true clustering. Many external cluster indices such as the Rand index favor a“perfect
match”, i.e., splitting one true subgroup into several estimated subgroups (as might be
unavoidable in a tree) is penalized by the index. Cramér’s coefficient is invariant against
such departures from a perfect match (Mirkin, 2001) and thus employed here.

4.3.3 Simulation results

Exemplary results are shown for the scenario with differences in both coefficients with
n = 200 observations, without the noise variables z3 and z4, and the double step scenario
as well as the logistic scenarios axis1 and diagonal with three levels ν = {−1, 0, 1} of
separation between subgroups. For the double step scenario, the hit rate for detecting
instability is depicted in the left panel of Figure 4.1. The tree clearly outperforms both
mixtures. For the logistic scenarios axis1 and diagonal, the hit rates are depicted in
Figure 4.2. If the covariates are only weakly associated with the subgroups (ν = −1,
left column), the tree is unable to detect the subgroups, regardless of how strongly they
differ in their regression coefficients. Both mixtures are able to detect instability beyond
a threshold of κ = 0.7 and reach hit rates of almost 1. For a medium association (ν = 0),
the tree is able to detect smaller differences in the regression coefficients than the mixtures
but for larger differences both mixtures equally outperform the tree. If the association is
strong (ν = 1), the tree outperforms both mixtures. The mixture with concomitants in
turn outperforms the plain mixture which is per definition invariant to (changes in) the
association between covariates and subgroups. Interestingly, the tree performs rather
similarly for the scenarios axis1 and diagonal, indicating that approximation through
sequential splits works rather well. For κ = 0 only one true subgroup exists and mixtures
nearly always select K̂ = 1 while trees incorrectly select K̂ > 1 subgroups only in less
than 5% of the cases (which is the significance level employed in the parameter stability
tests).
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Figure 4.1: Hit Rate (left panel) and Cramér’s coefficient (right panel) for the double
step covariate scenario. Line type: dashed for tree, solid for mixture, dot-dashed for
plain mixture.

The corresponding recovery of the subgroups as measured by Cramér’s coefficient is
depicted in the right panel of Figure 4.1 for the double step scenario. Similar to the
detection of instability, the tree outperforms both mixtures. For the logistic scenarios,
the Cramér’s coefficients are shown in Figure 4.3. For low and medium levels of associa-
tion between covariates and subgroups, both mixtures outperform the tree for stronger
instabilities. For a medium level of association (ν = 0) and small instabilities, the tree’s
advantage in detecting instabilities translates into an advantage of also uncovering the
correct subgroups. However for a stronger association (ν = 1), the mixture with con-
comitants recovers the true subgroups better than the other two methods once the hit
rates are similar across methods. Despite its good hit rates, the tree never exceeds a
Cramér’s coefficient of about 0.6. This is the case regardless of how strong the regression
coefficients differ, indicating that the tree’s ability to uncover the correct subgroups is
limited by the (relative) weakness of association between covariates and subgroups. For
an even stronger association (ν > 1, not depicted here), the tree recovers the subgroups
as well as the concomitant mixture in the axis1 scenario but fails to do so in the diagonal
scenario.

For larger numbers of observations (n = 500 or 1000) and the other two coefficients
scenarios (intercept and slope), results are similar to those shown here, just being gener-
ally more pronounced. Including two additional noise variables z3 and z4 affected both
the tree and the concomitant mixture, with hit rates dropping slightly stronger for the
mixture.

4.4 Discussion

Both methods are suitable to detect parameter instability (or lack thereof) and recover
the subgroups (if any). Which method is more suitable depends largely on the associa-
tion between the subgroups and covariates as well as how strongly the subgroups differ in
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their respective parameter vectors. If the association between subgroups and covariates is
strong, the tree is able to detect smaller differences in the parameters than the mixtures.
The approximation of a smooth transition between classes through sample splits works
rather well. In addition, the tree can represent a non-monotonic association which the
mixtures cannot. If the association between subgroups and covariates is weak but the
difference in the parameters reasonably strong, mixture models are more suitable than
the tree. Mixture models are also capable of detecting latent subgroups without any
association to covariates. It would be interesting to investigate whether these relation-
ships also apply to situations with more subgroups and mixtures with higher numbers of
components. Further questions for further research include the assessment of subgroup
recovery on a test set rather than in-sample and variable selection for the concomitant
models of mixtures, which could also be accomplished with an information criterion.

In summary, both methods have their relative advantages and thus are more suitable to
detect parameter instability and uncover subgroups in different situations. As the exact
structure is unknown in practice, we suggest using both methods to gain better insight
into the data.
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Chapter 5

Summary and Outlook

Mixture models are a flexible statistical tool, which can be applied to data stemming
from different groups when group membership is unknown. This tool is here applied in
a psychometric context to Rasch models. The R package psychomix provides a flexi-
ble open-source implementation of various extensions of the original model specification
by Rost (1990), e.g., allowing for different score distributions and the specification of
concomitant variable models (Dayton and Macready, 1988). This package extends the
previously existing opportunities for fitting mixtures of Rasch models in R.

The Rasch model is used to measure latent traits by modeling a subject’s probability of
solving an item as dependent on the subject’s ability and the item’s difficulty. Accurate
measurements and fair comparisons between subjects are only possible if each item is
equally difficult for every subject, i.e., no groups of subjects exist for which different
sets of item difficulties hold. Rasch mixture models can be used to assess this crucial
assumption of measurement invariance. However, previously suggested specifications of
the model are not invariant to the distribution of the scores, which are the number of
correctly scored items. Thus, the latent groups found by the Rasch mixture model cannot
only be based on the item difficulties but also – or even solely – on the subjects’ abilities.
While the first options are a violation of measurement invariance, the latter is not and
thus not of interest in this context. The newly suggested specification of the Rasch
mixture model restricts the score distribution in such a way that the latent groups found
by the model are only based on the item difficulties. It is thus better suited to detect
violations of measurement invariance, as illustrated in the simulation study comparing
old and new score specifications.

Another method to assess measurement invariance by establishing groups based on stable
item difficulties in a data-driven way are Rasch trees (Strobl et al., 2014). These are
based on model-based recursive partitioning which shares certain properties with mixture
models. Here, these two general statistical methods are unified in a common framework
and relative (dis-)advantages for the detection of parameter instability illustrated in a
simulation study. Neither method outperforms the other in all scenarios. Therefore, it
is suggested to employ both methods in an empirical analysis to overall gain a better
insight into the data.
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Since this thesis features aspects of statistics, psychometrics, and the corresponding
statistical and psychometric computing, the outlook for future work also branches out in
the various directions. Apart from mixtures of Rasch models, the psychomix package also
includes mixtures of Bradley-Terry models (Bradley and Terry, 1952) and is intended to
be extended to mixtures of further psychometric models such as the rating scale model
(Andrich, 1978) and the partial credit model (Masters, 1982).

The comparison of mixture models and model-based recursive partitioning was done for
the linear model as the group-specific model. An extension to a psychometric model
as the group-specific model is an option to further strengthen the exchange between
statistics and psychometrics by assessing how different methods for checking psychome-
tric model assumptions compare. The Rasch model and the Bradley-Terry model could
serve as a starting point. The corresponding implementations can be found in the R
packages psychotree (Strobl, Wickelmaier, and Zeileis, 2011b) and psychomix.

The framework of the comparison introduced in Chapter 4 should in future work be
extended to situations with more than two subgroups in the data. Also of interest are
more complex examples of parameter instability, e.g., including multiple regressors for
the linear model. The assessment of group recovery can be based on a test dataset
rather than on the dataset which was also used to fit the model. Variable selection for
the concomitant models of mixtures could be accomplished via an information criterion
or a likelihood ratio test and potentially included in the simulation design.

A further extension of mixture models allows for a mix of constant and varying pa-
rameters in the component-specific model. The varying parameters differ for groups of
observations whereas the constant parameters are fixed for the entire sample. In an ap-
plication to Rasch models, this type of mixture model could be used to estimate constant
parameters for DIF-free items and varying parameters for items with DIF. This type of
model is similar to mixed-effects models (Pinheiro and Bates, 2000), however, here the
distribution of the varying parameters is unknown and needs to be estimated. Grün and
Leisch (2008) thus see this type of model more closely related to the varying-coefficients
modeling framework (Hastie and Tibshirani, 1993). From the statistical viewpoint, a
closer look towards both model types is warranted since they also deal with heterogene-
ity in model parameters as do mixture models and model-based recursive partitioning.
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Appendix A

Using the FLXMCrasch() driver
directly with stepFlexmix()

The “FLXM” driver FLXMCrasch(), underlying the raschmix() function, can also be used
directly with flexmix() or stepFlexmix(), respectively, via the model argument. To
do so, essentially the same arguments as in raschmix() (see Section ??) can be used,
however, they need to be arranged somewhat differently. The formula just specifies the
item responses, while the concomitant variables need to be passed to the concomitant

argument in a suitable “FLXP” driver (see Grün and Leisch, 2008). Also some arguments,
such as the scores distribution have to be specified in the FLXMCrasch() driver for
the model argument. As an example, consider replication of the cm2 model fit on the
artificial data from Section ??:

R> set.seed(4)

R> fcm2 <- stepFlexmix(resp ~ 1, data = d, k = 1:3,

+ model = FLXMCrasch(scores = "meanvar"),

+ concomitant = FLXPmultinom(~ x1 + x2))

Thus, there is some more flexibility but somewhat less convenience when using flexmix()

or stepFlexmix() directly as opposed through the raschmix() interface. This is also
reflected in the objects returned which are of class“flexmix”or“stepFlexmix”, not class
“raschmix” or “stepRaschmix”, respectively. Thus, only the generic functions for those
objects apply and not the additional ones specific to Rasch mixture models. In various
cases, the methods are inherited or reused from flexmix and thus behave identically, e.g.,
for BIC() or getModel().

R> rbind(cm2 = BIC(cm2), fcm2 = BIC(fcm2))

1 2 3

cm2 21055.12 17776.3 17867.25

fcm2 21055.12 17776.3 17867.25
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R> fcm2b <- getModel(fcm2, which = "BIC")

For other methods, such as parameters(), the methods in psychomix offer more con-
venience. For example, the concomitant model coefficients can be accessed in the same
way

R> cbind(parameters(cm2b, which = "concomitant"),

+ parameters(fcm2b, which = "concomitant"))

1 2 1 2

(Intercept) 0 0.45759154 0 0.45759154

x1 0 -0.91231698 0 -0.91231698

x2 0 0.02909326 0 0.02909326

while the item and score parameters cannot be accessed separately (as it is possible for
“raschmix” objects). They can only be accessed jointly as the "model" parameters. The
method for “raschmix” objects also excludes non-identified or aliased parameters, e.g.,
the parameter for the anchor item.

R> parameters(fcm2b, which = "model")

Comp.1 Comp.2

item.Item01 0.0000000 0.0000000

item.Item02 0.4458307 -0.5087512

item.Item03 0.8794596 -1.2541765

item.Item04 1.5175890 -1.7793843

item.Item05 2.3308845 -2.3289326

item.Item06 2.8255465 -2.9351253

item.Item07 3.5001225 -3.5059792

item.Item08 4.0926599 -4.0813289

item.Item09 4.6158654 -4.6979718

item.Item10 5.2655073 -5.2701331

score1 0.1008315 0.1638214

score2 -0.2485943 -0.1711337

To sum up, some (convenience) functionality which is specific for Rasch mixture mod-
els is only available for objects of class “raschmix”, e.g., the score probabilities via
scoreProbs() or the item profiles via the default plot() method among others. On the
other hand, functionality which is applicable to mixture models in general is inherited
or preserved as part of the additional methods.
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