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Abstract. A basic assumption of many statistical models is that the same set of model
parameters holds for the entire sample. However, different parameters may hold in subgroups
(or clusters) which may or may not be explained by additional covariates. Finite mixture models
are a common technique for detecting such clusters and additional covariates (if available) can
be included as concomitant variables. Another approach that relies on covariates for detecting
the clusters are model-based trees. These recursively partition the data by splits along the
covariates and fit one model for each of the resulting subgroups. Both approaches are presented
in a unifying framework and their relative (dis)advantages for (a) detecting the presence of
clusters and (b) recovering the grouping structure are assessed in a simulation study, varying
both the parameter differences between the clusters and their association with the covariates.
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1 Introduction

A basic assumption of many statistical models is that its set of parameters applies to all ob-
servations. However, subgroups may exist for which different sets of parameters hold, e.g., the
relationship between some response and regressors might be different for younger and older
individuals. If the breakpoint which separates “younger” and “older” were known, parameter
stability can simply be assessed by checking for parameter differences between these two specific
subgroups. However, if the breakpoint is unknown or if there is a smooth transition between
“young” and “old”, the subgroups can be still be detected in a data-driven way. Either a finite
mixture model [5] can be employed, possibly using age as a concomitant variable [2] to model
smooth transitions between clusters. Alternatively, model-based recursive partitioning [9] can
capture the difference by one or more splits in the partitioning variable age, yielding a tree
structure (similar to classification and regression trees, [1]) where each leaf is associated with a
parametric model.
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Given their shared goal of establishing subgroups to capture parameter instabilities across
subgroups, how do these mixture models and model-based trees compare? A unifying framework
for both methods is presented and their relative (dis)advantages for (a) detecting the presence
of clusters with different parameters and (b) recovering the underlying grouping structure are
assessed in a simulation study.

2 Theory

Although both mixture models and model-based trees can be applied to general parametric
models estimated by means of the maximum likelihood (ML) principle, we focus on linear
regression here because it is the most simple and commonly applied model:

yi = x>i β + εi (1)

with response yi, regressor vector xi, and errors εi for observations i = 1, . . . , n. The unknown
vector of regression coefficients β can be estimated by least squares, which yields the same
estimates as ML estimation under the assumption of independent normal errors with variance
σ2. In the latter case the log-likelihood is given by

∑n
i=1 log φ(yi;x

>
i β, σ

2) where φ(·) denotes
the probability density function of the normal distribution.

Within this framework, both trees and mixture models can assess whether the same coeffi-
cient vector β holds for all n observations and, if parameter stability is violated, simultaneously
find clusters/subgroups and estimate the associated cluster-specific coefficients. Further covari-
ates zi can be used as concomitant or partitioning variables, respectively, to establish these
clusters.

Finite mixture models

Finite mixture models assume that the data stem from K different subgroups with unknown
subgroup membership and subgroup-specific parameters β(k) and σ(k) (k = 1, . . . ,K). The full
mixture model is a weighted sum over these separate models (or components):

f(yi;xi, zi, β(1), σ(1), . . . , β(K), σ(K)) =
K∑
k=1

πk(zi) · φ(yi;x
>
i β(k), σ

2
(k)). (2)

The component weights may depend on the additional covariates zi through a concomitant
variable model [2], typically a multinomial logit model

πk(zi) =
exp(z>i α(k))∑K
g=1 exp(z>i α(g))

(3)

with component-specific coefficients α(k). For identifiability, one group (typically the first) is
used as a reference group and the coefficients of this group are set to zero: α(1) = 0. This
also includes the special case without concomitant variables, where zi = 1 is just an intercept
yielding component-specific weights πk(zi) = π(k).

Given the number of subgroups K, all parameters in the mixture model are typically esti-
mated simultaneously by ML using the expectation-maximization (EM) algorithm. To choose
the number of subgroups K, the mixture model is typically fitted for K = 1, 2, . . . and then
the best-fitting model is selected by some information criterion. Here, we employ the Bayesian
Information Criterion (BIC).
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Model-based recursive partitioning

Model-based recursive partitioning [9] can also detect subgroups for which different model pa-
rameters hold. These subgroups are separated by sample splits in the covariates zi used for
partitioning. The algorithm performs the following steps:

1. Estimate the model parameters in the current subgroup.

2. Test parameter stability along each partitioning variable zij .

3. If any instability is found, split the sample along the variable zij∗ with the highest insta-
bility. Choose the breakpoint with the highest improvement in model fit.

4. Repeat 2–4 on the resulting subsamples until no further instability is found.

Here, we only briefly outline how these parameter instability tests work and refer to [8]
for the theoretical details. The basic idea is that the scores, i.e., the derivative of log φ(·)
with respect to the parameters, evaluated at the estimated coefficients behave similar to least
squares residuals: They sum to zero and if the model fits well they should fluctuate randomly
around zero. However, if the parameters change along one of the partitioning variables zij ,
there should be systematic departures from zero. Such departures along a covariate can be
captured by a cumulative sum of the scores (ordered by the covariate) and aggregated to a test
statistic, e.g., summing the absolute or squared cumulative deviations. Summing the scores
along a categorical partitioning variable then leads to a statistic that has an asymptotic χ2

distribution while aggregation along numeric partitioning variables can be done in a way that
yields a maximally-selected score (or Lagrange multiplier) test. In either case, the p-value pj can
be obtained for each ordering along zij without having to reestimate the model. The p-values
are then Bonferroni-adjusted to account for testing along multiple orderings and partitioning
continues until there is no further significant instability (here at the 5% level).

Since each split can be expressed through an indicator function I(·) (for going left or right),
each branch of the tree can be represented as a product of such indicator functions. Therefore,
the model-based tree induced by recursive partitioning is in fact also a model of type (2), albeit
with rather different weights:

πk(zi) =

Jk∏
j=1

I(s(j|k) · zi(j|k) > b(j|k)) (4)

where z(j|k) denotes the j-th partitioning variable for terminal node k, b(j|k) is the associated
breakpoint, s(j|k) ∈ {−1, 1} the sign (signaling splitting to the left or right), and Jk the number
of splits leading up to node k.

Differences and similarities

While both methods are based on the same linear regression model and aim at detecting sub-
groups with stable parameters, certain differences arise:

• Because K is fixed for each mixture model, it is based on model selection via an information
criterion whereas the selection of K through a tree is based on significance tests.
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• Covariates z are optional for mixture models and latent subgroups can be estimated. For
a tree, those covariates are required. Furthermore, if no covariates associated with the
subgroups are available, the groups cannot be detected.

• The concomitant model (3) assumes a smooth, monotonic transition between subgroups.
The sample splits of a tree (4) represent abrupt shifts, multiple splits in a covariate are
able to represent a non-monotonic transition. While variable selection is inherent to trees,
it requires an additional step for mixtures models.

• Trees yield a hard clustering and mixtures a probabilistic clustering of the observations.

To investigate how the aforementioned differences between the two methods affect their
ability to detect parameter instability, a simulation study is conducted, which is described in
the next section.

3 Simulation study

To determine how well mixture models and model-based trees detect parameter instability, two
basic questions are asked. First, is any instability found at all? Second, if so, are the correct
subgroups recovered? These two aspects are potentially influenced by several factors: How does
the relationship between the response y and the regressors x differ between the subgroups and
how strongly does it differ? If there are any additional covariates z available, how and how
strongly are those covariates connected to the subgroups? In general, we expect the following:

• Given the covariates z are associated strongly enough with the subgroups, trees are able to
detect smaller differences in β(k) than mixtures because they employ a significance test for
each parameter rather than an information criterion for full sets of parameters. In contrast,
mixtures are more suitable to detect subgroups if they are only loosely associated with the
covariates z, as long as the differences in β(k) are strong enough.

• If the association between covariates and subgroups is smooth and monotonic, mixtures
are more suitable to detect the subgroups whereas trees are more suitable if the association
is characterized by abrupt shifts and possibly non-monotonic.

• If several covariates determine the subgroups simultaneously, the mixture is more suitable,
whereas trees are more suitable if z includes several noise variables unconnected to the
subgroups.

Motivated by these considerations, the simulation design is explained in the next section.

Simulation design

A single regressor x and four additional covariates z1, . . . , z4 are drawn from a uniform dis-
tribution on [−1, 1]. The response y is computed with errors drawn from a standard normal
distribution. Two subgroups of equal size are simulated. How they differ is governed by the form
of β – either in their intercept, slope, or both – and the magnitude of their differences is governed
by the simulation parameter κ (Table 1). How the covariates are connected to the subgroups
is governed by the form of πk(z) – either via a logistic or a step function – and the strength

COMPSTAT 2014 Proceedings



Hannah Frick, Carolin Strobl and Achim Zeileis 383

Label Details

Coefficients intercept β(1) = (κ, 0)> β(2) = (−κ, 0)>

slope β(1) = (0, κ)> β(2) = (0,−κ)>

both β(1) = (κ,−κ)> β(2) = (−κ, κ)>

Covariates axis1 logistic with α(2) = (exp(ν), 0, 0, 0)>

diagonal logistic with α(2) = (exp(ν),− exp(ν), 0, 0)>

double step tree with π2(z) = I(z1 > −0.5)I(z1 < 0.5)

Table 1. Simulation scenarios for regression coefficients and covariates.

of this association is governed by simulation parameter ν. Here, three scenarios for πk(z) are
considered: a smooth logistic transition along z1, a smooth logistic transition along z1 and z2
simultaneously, and a sharp transition along z1 with two breakpoints (labeled axis1, diagonal,
and double step, respectively). The corresponding parameter vector of the logistic function and
the breakpoints can be found in Table 1. The simulation parameters cover the following ranges:
κ ∈ {0, 0.05, . . . , 1} and ν ∈ {−1,−0.5, . . . , 2}. Note that β(1) and β(2) are identical if κ = 0
and thus only one subgroup is simulated. Each coefficient scenario is combined with every co-
variate scenario and the sample size n ∈ {200, 500, 1000} is varied. The covariates z3 and z4 are
always noise variables and thus either included or excluded in z. For each of these conditions,
500 datasets are drawn and three methods applied: a model-based tree, a plain mixture, and
a mixture with concomitant variables. Both mixtures are fitted with K = {1, . . . , 4} and K̂
selected via BIC. For all computations, the R system for statistical computing [7] is used along
with the add-on packages partykit [4] and flexmix [3].

Outcome assessment

To address the first question of whether or not any instability is found, the hit rate is computed:
This is the rate of selecting more than one subgroup – this corresponds to splitting at least
once for a tree and to selecting K̂ > 1 for a mixture. To address the second question if the
right subgroups are found, the estimated clustering is compared to the true clustering. Many
external cluster indices such as the Rand index favor a “perfect match”, i.e., splitting one true
subgroup into several estimated subgroups (as might be unavoidable in a tree) is penalized by
the index. Cramér’s coefficient is invariant against such departures from a perfect match [6] and
thus employed here.

Simulation results

Exemplary results are shown for the scenario with differences in both coefficients with n = 200
observations, without the noise variables z3 and z4, and the double step scenario as well as
the logistic scenarios axis1 and diagonal with three levels ν = {−1, 0, 1} of separation between
subgroups. For the double step scenario, the hit rate for detecting instability is depicted in the
left panel of Figure 1. The tree clearly outperforms both mixtures. For the logistic scenarios
axis1 and diagonal, the hit rates are depicted in Figure 2. If the covariates are only weakly
associated with the subgroups (ν = −1, left column), the tree is unable to detect the subgroups,
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Parameter instability (κ)
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Figure 1. Hit Rate (left panel) and Cramér’s coefficient (right panel) for the double step covariate
scenario. Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.

regardless of how strongly they differ in their regression coefficients. Both mixtures are able
to detect instability beyond a threshold of κ = 0.7 and reach hit rates of almost 1. For a
medium association (ν = 0), the tree is able to detect smaller differences in the regression
coefficients than the mixtures but for larger differences both mixtures equally outperform the
tree. If the association is strong (ν = 1), the tree outperforms both mixtures. The mixture
with concomitants in turn outperforms the plain mixture which is per definition invariant to
(changes in) the association between covariates and subgroups. Interestingly, the tree performs
rather similarly for the scenarios axis1 and diagonal, indicating that approximation through
sequential splits works rather well. For κ = 0 only one true subgroup exists and mixtures nearly
always select K̂ = 1 while trees incorrectly select K̂ > 1 subgroups only in less than 5% of the
cases (which is the significance level employed in the parameter stability tests).

The corresponding recovery of the subgroups as measured by Cramér’s coefficient is depicted
in the right panel of Figure 1 for the double step scenario. Similar to the detection of instability,
the tree outperforms both mixtures. For the logistic scenarios, the Cramér’s coefficients are
shown in Figure 3. For low and medium levels of association between covariates and subgroups,
both mixtures outperform the tree for stronger instabilities. For a medium level of association
(ν = 0) and small instabilities, the tree’s advantage in detecting instabilities translates into an
advantage of also uncovering the correct subgroups. However for a stronger association (ν = 1),
the mixture with concomitants recovers the true subgroups better than the other two methods
once the hit rates are similar across methods. Despite its good hit rates, the tree never exceeds
a Cramér’s coefficient of about 0.6. This is the case regardless of how strong the regression
coefficients differ, indicating that the tree’s ability to uncover the correct subgroups is limited
by the (relative) weakness of association between covariates and subgroups. For an even stronger
association (ν > 1, not depicted here), the tree recovers the subgroups as well as the concomitant
mixture in the axis1 scenario but fails to do so in the diagonal scenario.

For larger numbers of observations (n = 500 or 1000) and the other two coefficients sce-
narios (intercept and slope), results are similar to those shown here, just being generally more
pronounced. Including two additional noise variables z3 and z4 affected both the tree and the
concomitant mixture, with hit rates dropping slightly stronger for the mixture.
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Parameter instability (κ)
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Figure 2. Hit Rate for the logistic covariate scenarios for three levels of ν ∈ {−1, 0, 1}.
Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.
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Figure 3. Cramér’s coefficient for the logistic covariate scenarios for three levels of ν ∈ {−1, 0, 1}.
Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.
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4 Discussion

Both methods are suitable to detect parameter instability (or lack thereof) and recover the
subgroups (if any). Which method is more suitable depends largely on the association between
the subgroups and covariates as well as how strongly the subgroups differ in their respective
parameter vectors. If the association between subgroups and covariates is strong, the tree is
able to detect smaller differences in the parameters than the mixtures. The approximation of
a smooth transition between classes through sample splits works rather well. In addition, the
tree can represent a non-monotonic association which the mixtures cannot. If the association
between subgroups and covariates is weak but the difference in the parameters reasonably strong,
mixture models are more suitable than the tree. Mixture models are also capable of detecting
latent subgroups without any association to covariates. It would be interesting to investigate
whether these relationships also apply to situations with more subgroups and mixtures with
higher numbers of components. Further questions for further research include the assessment of
subgroup recovery on a test set rather than in-sample and variable selection for the concomitant
models of mixtures, which could also be accomplished with an information criterion.

In summary, both methods have their relative advantages and thus are more suitable to detect
parameter instability and uncover subgroups in different situations. As the exact structure is
unknown in practice, we suggest using both methods to gain better insight into the data.
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